{-# OPTIONS --rewriting #-} module Properties.StrictMode where import Agda.Builtin.Equality.Rewrite open import Agda.Builtin.Equality using (_≡_; refl) open import FFI.Data.Either using (Either; Left; Right) open import FFI.Data.Maybe using (Maybe; just; nothing) open import Luau.Heap using (Heap; Object; function_is_end; defn; alloc; ok; next; lookup-not-allocated) renaming (_≡_⊕_↦_ to _≡ᴴ_⊕_↦_; _[_] to _[_]ᴴ; ∅ to ∅ᴴ) open import Luau.StrictMode using (Warningᴱ; Warningᴮ; Warningᴼ; Warningᴴ; UnallocatedAddress; UnboundVariable; FunctionCallMismatch; app₁; app₂; BinOpWarning; BinOpMismatch₁; BinOpMismatch₂; bin₁; bin₂; BlockMismatch; block₁; return; LocalVarMismatch; local₁; local₂; FunctionDefnMismatch; function₁; function₂; heap; expr; block; addr; +; -; *; /; <; >; <=; >=; ··; _<:_; _≮:_) open import Luau.Substitution using (_[_/_]ᴮ; _[_/_]ᴱ; _[_/_]ᴮunless_; var_[_/_]ᴱwhenever_) open import Luau.Syntax using (Expr; yes; var; val; var_∈_; _⟨_⟩∈_; _$_; addr; number; bool; string; binexp; nil; function_is_end; block_is_end; done; return; local_←_; _∙_; fun; arg; name; ==; ~=) open import Luau.Type using (Type; strict; nil; number; boolean; string; _⇒_; none; any; tgt; _≡ᵀ_; _≡ᴹᵀ_) open import Luau.TypeCheck(strict) using (_⊢ᴮ_∈_; _⊢ᴱ_∈_; _⊢ᴴᴮ_▷_∈_; _⊢ᴴᴱ_▷_∈_; nil; var; addr; app; function; block; done; return; local; orAny; tgtBinOp) open import Luau.Var using (_≡ⱽ_) open import Luau.Addr using (_≡ᴬ_) open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_; ⊕-lookup-miss; ⊕-swap; ⊕-over) renaming (_[_] to _[_]ⱽ) open import Luau.VarCtxt using (VarCtxt; ∅) open import Properties.Remember using (remember; _,_) open import Properties.Equality using (_≢_; sym; cong; trans; subst₁) open import Properties.Dec using (Dec; yes; no) open import Properties.Contradiction using (CONTRADICTION; ¬) open import Properties.TypeCheck(strict) using (typeOfᴼ; typeOfᴹᴼ; typeOfⱽ; typeOfᴱ; typeOfᴮ; typeCheckᴱ; typeCheckᴮ; typeCheckᴼ; typeCheckᴴ) open import Luau.OpSem using (_⟦_⟧_⟶_; _⊢_⟶*_⊣_; _⊢_⟶ᴮ_⊣_; _⊢_⟶ᴱ_⊣_; app₁; app₂; function; beta; return; block; done; local; subst; binOp₀; binOp₁; binOp₂; refl; step; +; -; *; /; <; >; ==; ~=; <=; >=; ··) open import Luau.RuntimeError using (BinOpError; RuntimeErrorᴱ; RuntimeErrorᴮ; FunctionMismatch; BinOpMismatch₁; BinOpMismatch₂; UnboundVariable; SEGV; app₁; app₂; bin₁; bin₂; block; local; return; +; -; *; /; <; >; <=; >=; ··) open import Luau.RuntimeType using (valueType; number; string; function) -- Move these! -- swapLR : ∀ {A B} → Either A B → Either B A swapLR (Left x) = Right x swapLR (Right x) = Left x mapL : ∀ {A B C} → (A → B) → Either A C → Either B C mapL f (Left x) = Left (f x) mapL f (Right x) = Right x mapR : ∀ {A B C} → (B → C) → Either A B → Either A C mapR f (Left x) = Left x mapR f (Right x) = Right (f x) mapLR : ∀ {A B C D} → (A → B) → (C → D) → Either A C → Either B D mapLR f g (Left x) = Left (f x) mapLR f g (Right x) = Right (g x) cond : ∀ {A B C : Set} → (A → C) → (B → C) → (Either A B) → C cond f g (Left x) = f x cond f g (Right x) = g x infixr 5 _∘_ _∘_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C) (f ∘ g) x = f (g x) -- src = Luau.Type.src strict data _⊑_ (H : Heap yes) : Heap yes → Set where refl : (H ⊑ H) snoc : ∀ {H′ a O} → (H′ ≡ᴴ H ⊕ a ↦ O) → (H ⊑ H′) rednᴱ⊑ : ∀ {H H′ M M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → (H ⊑ H′) rednᴮ⊑ : ∀ {H H′ B B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → (H ⊑ H′) rednᴱ⊑ (function a p) = snoc p rednᴱ⊑ (app₁ s) = rednᴱ⊑ s rednᴱ⊑ (app₂ p s) = rednᴱ⊑ s rednᴱ⊑ (beta O v p q) = refl rednᴱ⊑ (block s) = rednᴮ⊑ s rednᴱ⊑ (return v) = refl rednᴱ⊑ done = refl rednᴱ⊑ (binOp₀ p) = refl rednᴱ⊑ (binOp₁ s) = rednᴱ⊑ s rednᴱ⊑ (binOp₂ s) = rednᴱ⊑ s rednᴮ⊑ (local s) = rednᴱ⊑ s rednᴮ⊑ (subst v) = refl rednᴮ⊑ (function a p) = snoc p rednᴮ⊑ (return s) = rednᴱ⊑ s data LookupResult (H : Heap yes) a V : Set where just : (H [ a ]ᴴ ≡ just V) → LookupResult H a V nothing : (H [ a ]ᴴ ≡ nothing) → LookupResult H a V lookup-⊑-nothing : ∀ {H H′} a → (H ⊑ H′) → (H′ [ a ]ᴴ ≡ nothing) → (H [ a ]ᴴ ≡ nothing) lookup-⊑-nothing {H} a refl p = p lookup-⊑-nothing {H} a (snoc defn) p with a ≡ᴬ next H lookup-⊑-nothing {H} a (snoc defn) p | yes refl = refl lookup-⊑-nothing {H} a (snoc o) p | no q = trans (lookup-not-allocated o q) p -- For the moment subtyping is just syntactic equality, with any as top but this will change! <:-refl : ∀ T → (T <: T) <:-refl T = {!!} <:-any : ∀ T → (T <: any) <:-any = {!!} ≮:-antirefl : ∀ T → ¬(T ≮: T) ≮:-antirefl = {!!} ≮:-antitrans : ∀ {S T U} → (S ≮: U) → Either (S ≮: T) (T ≮: U) ≮:-antitrans = {!!} <:-trans-≮: : ∀ {S T U} → (S <: T) → (S ≮: U) → (T ≮: U) <:-trans-≮: = {!!} ≮:-trans-<: : ∀ {S T U} → (S ≮: U) → (T <: U) → (S ≮: T) ≮:-trans-<: = {!!} src-contravariant : ∀ {T U} → (T <: U) → (src U <: src T) src-contravariant = {!!} tgt-covariant : ∀ {T U} → (T <: U) → (tgt T <: tgt U) tgt-covariant = {!!} tgt-≮: : ∀ {T U} → (tgt T ≮: tgt U) → (T ≮: U) tgt-≮: = {!!} none-tgt-≮: : ∀ {T U} → (T ≮: (none ⇒ U)) → (tgt T ≮: U) none-tgt-≮: = {!!} src-≮: : ∀ {T U} → (src T ≮: src U) → (U ≮: T) src-≮: = {!!} any-src-≮: : ∀ {T U} → (T ≮: (U ⇒ any)) → (U ≮: src T) any-src-≮: = {!!} -- The rest of the proof just depends on those properties ≮:-trans-≡ : ∀ {S T U} → (S ≮: T) → (T ≡ U) → (S ≮: U) ≮:-trans-≡ p refl = p ≡-trans-≮: : ∀ {S T U} → (S ≡ T) → (T ≮: U) → (S ≮: U) ≡-trans-≮: refl p = p ≡-impl-<: : ∀ {T U} → (T ≡ U) → (T <: U) ≡-impl-<: {T} refl = <:-refl T heap-weakeningᴱ : ∀ Γ H M {H′} → (H ⊑ H′) → (typeOfᴱ H′ Γ M <: typeOfᴱ H Γ M) heap-weakeningᴮ : ∀ Γ H B {H′} → (H ⊑ H′) → (typeOfᴮ H′ Γ B <: typeOfᴮ H Γ B) heap-weakeningᴱ Γ H (var x) h = <:-refl (typeOfᴱ H Γ (var x)) heap-weakeningᴱ Γ H (val nil) h = <:-refl nil heap-weakeningᴱ Γ H (val (addr a)) refl = <:-refl (typeOfᴱ H Γ (val (addr a))) heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = b} defn) with a ≡ᴬ b heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = a} {O = O} defn) | yes refl = <:-any (typeOfᴼ O) heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = b} p) | no q = ≡-impl-<: (cong orAny (cong typeOfᴹᴼ (sym (lookup-not-allocated p q)))) heap-weakeningᴱ Γ H (val (number n)) h = <:-refl number heap-weakeningᴱ Γ H (val (bool b)) h = <:-refl boolean heap-weakeningᴱ Γ H (val (string x)) h = <:-refl string heap-weakeningᴱ Γ H (binexp M op N) h = <:-refl (typeOfᴱ H Γ (binexp M op N)) heap-weakeningᴱ Γ H (M $ N) h = tgt-covariant (heap-weakeningᴱ Γ H M h) heap-weakeningᴱ Γ H (function f ⟨ var x ∈ T ⟩∈ U is B end) h = <:-refl (T ⇒ U) heap-weakeningᴱ Γ H (block var b ∈ T is B end) h = <:-refl T heap-weakeningᴮ Γ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h = heap-weakeningᴮ (Γ ⊕ f ↦ (T ⇒ U)) H B h heap-weakeningᴮ Γ H (local var x ∈ T ← M ∙ B) h = heap-weakeningᴮ (Γ ⊕ x ↦ T) H B h heap-weakeningᴮ Γ H (return M ∙ B) h = heap-weakeningᴱ Γ H M h heap-weakeningᴮ Γ H (done) h = <:-refl nil heap-weakening-≮:ᴱ : ∀ Γ H M {H′ U} → (H ⊑ H′) → (typeOfᴱ H′ Γ M ≮: U) → (typeOfᴱ H Γ M ≮: U) heap-weakening-≮:ᴱ Γ H M h p = <:-trans-≮: (heap-weakeningᴱ Γ H M h) p heap-weakening-≮:ᴮ : ∀ Γ H B {H′ U} → (H ⊑ H′) → (typeOfᴮ H′ Γ B ≮: U) → (typeOfᴮ H Γ B ≮: U) heap-weakening-≮:ᴮ Γ H B h p = <:-trans-≮: (heap-weakeningᴮ Γ H B h) p -- none-not-obj : ∀ O → none ≢ typeOfᴼ O -- none-not-obj (function f ⟨ var x ∈ T ⟩∈ U is B end) () -- typeOf-val-not-none : ∀ {H Γ} v → OrWarningᴱ H (typeCheckᴱ H Γ (val v)) (typeOfᴱ H Γ (val v) ≮: none) -- typeOf-val-not-none nil = ok {!!} -- typeOf-val-not-none (number n) = ok {!!} -- typeOf-val-not-none (bool b) = ok {!!} -- typeOf-val-not-none (string x) = ok {!!} -- typeOf-val-not-none {H = H} (addr a) with remember (H [ a ]ᴴ) -- typeOf-val-not-none {H = H} (addr a) | (just O , p) = ok {!!} -- typeOf-val-not-none {H = H} (addr a) | (nothing , p) = warning (UnallocatedAddress p) substitutivityᴱ : ∀ {Γ T U} H M v x → (typeOfᴱ H Γ (M [ v / x ]ᴱ) ≮: U) → Either (typeOfᴱ H (Γ ⊕ x ↦ T) M ≮: U) (typeOfᴱ H ∅ (val v) ≮: T) substitutivityᴱ-whenever : ∀ {Γ T U} H v x y (r : Dec(x ≡ y)) → (typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever r) ≮: U) → Either (typeOfᴱ H (Γ ⊕ x ↦ T) (var y) ≮: U) (typeOfᴱ H ∅ (val v) ≮: T) substitutivityᴮ : ∀ {Γ T U} H B v x → (typeOfᴮ H Γ (B [ v / x ]ᴮ) ≮: U) → Either (typeOfᴮ H (Γ ⊕ x ↦ T) B ≮: U) (typeOfᴱ H ∅ (val v) ≮: T) substitutivityᴮ-unless : ∀ {Γ T U V} H B v x y (r : Dec(x ≡ y)) → (typeOfᴮ H (Γ ⊕ y ↦ U) (B [ v / x ]ᴮunless r) ≮: V) → Either (typeOfᴮ H ((Γ ⊕ x ↦ T) ⊕ y ↦ U) B ≮: V) (typeOfᴱ H ∅ (val v) ≮: T) substitutivityᴮ-unless-yes : ∀ {Γ Γ′ T V} H B v x y (r : x ≡ y) → (Γ′ ≡ Γ) → (typeOfᴮ H Γ (B [ v / x ]ᴮunless yes r) ≮: V) → Either (typeOfᴮ H Γ′ B ≮: V) (typeOfᴱ H ∅ (val v) ≮: T) substitutivityᴮ-unless-no : ∀ {Γ Γ′ T V} H B v x y (r : x ≢ y) → (Γ′ ≡ Γ ⊕ x ↦ T) → (typeOfᴮ H Γ (B [ v / x ]ᴮunless no r) ≮: V) → Either (typeOfᴮ H Γ′ B ≮: V) (typeOfᴱ H ∅ (val v) ≮: T) substitutivityᴱ H (var y) v x p = substitutivityᴱ-whenever H v x y (x ≡ⱽ y) p substitutivityᴱ H (val w) v x p = Left p substitutivityᴱ H (binexp M op N) v x p = Left p substitutivityᴱ H (M $ N) v x p = mapL none-tgt-≮: (substitutivityᴱ H M v x (tgt-≮: p)) substitutivityᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p = Left p substitutivityᴱ H (block var b ∈ T is B end) v x p = Left p substitutivityᴱ-whenever H v x x (yes refl) q = swapLR (≮:-antitrans q) substitutivityᴱ-whenever H v x y (no p) q = Left (≡-trans-≮: (cong orAny (sym (⊕-lookup-miss x y _ _ p))) q) substitutivityᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p = substitutivityᴮ-unless H B v x f (x ≡ⱽ f) p substitutivityᴮ H (local var y ∈ T ← M ∙ B) v x p = substitutivityᴮ-unless H B v x y (x ≡ⱽ y) p substitutivityᴮ H (return M ∙ B) v x p = substitutivityᴱ H M v x p substitutivityᴮ H done v x p = Left p substitutivityᴮ-unless H B v x y (yes p) q = substitutivityᴮ-unless-yes H B v x y p (⊕-over p) q substitutivityᴮ-unless H B v x y (no p) q = substitutivityᴮ-unless-no H B v x y p (⊕-swap p) q substitutivityᴮ-unless-yes H B v x y refl refl p = Left p substitutivityᴮ-unless-no H B v x y p refl q = substitutivityᴮ H B v x q -- substitutivityᴱ-src : ∀ {Γ T} H M N v x → (typeOfᴱ H Γ (N [ v / x ]ᴱ) ≮: src(typeOfᴱ H Γ (M [ v / x ]ᴱ))) → Either (typeOfᴱ H (Γ ⊕ x ↦ T) N ≮: src(typeOfᴱ H (Γ ⊕ x ↦ T) M)) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T)) -- substitutivityᴱ-src = {!!} -- substitutivityᴱ H (var y) v x p with x ≡ⱽ y -- substitutivityᴱ H (var y) v x p | yes q = substitutivityᴱ-whenever-yes H v x y q p -- substitutivityᴱ H (var y) v x p | no q = substitutivityᴱ-whenever-no H v x y q p -- substitutivityᴱ H (val w) v x p = refl -- substitutivityᴱ H (binexp M op N) v x p = refl -- substitutivityᴱ H (M $ N) v x p = cong tgt (substitutivityᴱ H M v x p) -- substitutivityᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p = refl -- substitutivityᴱ H (block var b ∈ T is B end) v x p = refl -- substitutivityᴱ-whenever-yes H v x x refl q = cong orAny q -- substitutivityᴱ-whenever-no H v x y p q = cong orAny ( sym (⊕-lookup-miss x y _ _ p)) -- substitutivityᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p with x ≡ⱽ f -- substitutivityᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p | yes q = substitutivityᴮ-unless-yes H B v x f q p (⊕-over q) -- substitutivityᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p | no q = substitutivityᴮ-unless-no H B v x f q p (⊕-swap q) -- substitutivityᴮ H (local var y ∈ T ← M ∙ B) v x p with x ≡ⱽ y -- substitutivityᴮ H (local var y ∈ T ← M ∙ B) v x p | yes q = substitutivityᴮ-unless-yes H B v x y q p (⊕-over q) -- substitutivityᴮ H (local var y ∈ T ← M ∙ B) v x p | no q = substitutivityᴮ-unless-no H B v x y q p (⊕-swap q) -- substitutivityᴮ H (return M ∙ B) v x p = substitutivityᴱ H M v x p -- substitutivityᴮ H done v x p = refl -- substitutivityᴮ-unless-yes H B v x x refl q refl = refl -- substitutivityᴮ-unless-no H B v x y p q refl = substitutivityᴮ H B v x q -- binOpPreservation : ∀ H {op v w x} → (v ⟦ op ⟧ w ⟶ x) → (tgtBinOp op ≡ typeOfᴱ H ∅ (val x)) -- binOpPreservation H (+ m n) = refl -- binOpPreservation H (- m n) = refl -- binOpPreservation H (/ m n) = refl -- binOpPreservation H (* m n) = refl -- binOpPreservation H (< m n) = refl -- binOpPreservation H (> m n) = refl -- binOpPreservation H (<= m n) = refl -- binOpPreservation H (>= m n) = refl -- binOpPreservation H (== v w) = refl -- binOpPreservation H (~= v w) = refl -- binOpPreservation H (·· v w) = refl -- <:-BinOpWarning : ∀ op {T U} → (T <: U) → BinOpWarning op T → BinOpWarning op U -- <:-BinOpWarning = {!!} -- preservationᴱ : ∀ H M {H′ M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → Either (typeOfᴱ H′ ∅ M′ <: typeOfᴱ H ∅ M) (Either (Warningᴱ H (typeCheckᴱ H ∅ M)) (Warningᴴ H (typeCheckᴴ H))) -- preservationᴮ : ∀ H B {H′ B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → Either (typeOfᴮ H′ ∅ B′ <: typeOfᴮ H ∅ B) (Either (Warningᴮ H (typeCheckᴮ H ∅ B)) (Warningᴴ H (typeCheckᴴ H))) -- preservationᴱ = {!!} -- preservationᴮ = {!!} -- preservationᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) = ok refl -- preservationᴱ H (M $ N) (app₁ s) with preservationᴱ H M s -- preservationᴱ H (M $ N) (app₁ s) | ok p = ok (cong tgt p) -- preservationᴱ H (M $ N) (app₁ s) | warning (expr W) = warning (expr (app₁ W)) -- preservationᴱ H (M $ N) (app₁ s) | warning (heap W) = warning (heap W) -- preservationᴱ H (M $ N) (app₂ p s) with heap-weakeningᴱ H M (rednᴱ⊑ s) -- preservationᴱ H (M $ N) (app₂ p s) | ok q = ok (cong tgt q) -- preservationᴱ H (M $ N) (app₂ p s) | warning W = warning (expr (app₁ W)) -- preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) with remember (typeOfⱽ H v) -- preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (just U , q) with S ≡ᵀ U | T ≡ᵀ typeOfᴮ H (x ↦ S) B -- preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | yes refl = ok (cong tgt (cong orAny (cong typeOfᴹᴼ p))) -- preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | no r = warning (heap (addr a p (FunctionDefnMismatch {!!}))) -- preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (just U , q) | no r | _ = warning (expr (FunctionCallMismatch {!!})) -- preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (nothing , q) with typeOf-val-not-none v -- preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (nothing , q) | ok r = {!!} -- preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (nothing , q) | warning W = warning (expr (app₂ W)) -- preservationᴱ H (block var b ∈ T is B end) (block s) = ok refl -- preservationᴱ H (block var b ∈ T is return M ∙ B end) (return v) with T ≡ᵀ typeOfᴱ H ∅ (val v) -- preservationᴱ H (block var b ∈ T is return M ∙ B end) (return v) | yes p = ok p -- preservationᴱ H (block var b ∈ T is return M ∙ B end) (return v) | no p = warning (expr (BlockMismatch p)) -- preservationᴱ H (block var b ∈ T is done end) (done) with T ≡ᵀ nil -- preservationᴱ H (block var b ∈ T is done end) (done) | yes p = ok p -- preservationᴱ H (block var b ∈ T is done end) (done) | no p = warning (expr (BlockMismatch p)) -- preservationᴱ H (binexp M op N) (binOp₀ s) = ok (binOpPreservation H s) -- preservationᴱ H (binexp M op N) (binOp₁ s) = ok refl -- preservationᴱ H (binexp M op N) (binOp₂ s) = ok refl -- preservationᴮ H (local var x ∈ T ← M ∙ B) (local s) with heap-weakeningᴮ H B (rednᴱ⊑ s) -- preservationᴮ H (local var x ∈ T ← M ∙ B) (local s) | ok p = ok p -- preservationᴮ H (local var x ∈ T ← M ∙ B) (local s) | warning W = warning (block (local₂ W)) -- preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) with remember (typeOfⱽ H v) -- preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (just U , p) with T ≡ᵀ U -- preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (just T , p) | yes refl = ok (substitutivityᴮ H B v x (sym p)) -- preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (just U , p) | no q = warning (block (LocalVarMismatch {!!})) -- preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (nothing , p) with typeOf-val-not-none v -- preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (nothing , p) | ok q = {!!} -- preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (nothing , p) | warning W = warning (block (local₁ W)) -- preservationᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) with heap-weakeningᴮ H B (snoc defn) -- preservationᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) | ok r = ok (trans r (substitutivityᴮ _ B (addr a) f refl)) -- preservationᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) | warning W = warning (block (function₂ W)) -- preservationᴮ H (return M ∙ B) (return s) with preservationᴱ H M s -- preservationᴮ H (return M ∙ B) (return s) | ok p = ok p -- preservationᴮ H (return M ∙ B) (return s) | warning (expr W) = warning (block (return W)) -- preservationᴮ H (return M ∙ B) (return s) | warning (heap W) = warning (heap W) reflect-subtypingᴱ : ∀ H M {H′ M′ T} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → (typeOfᴱ H′ ∅ M′ ≮: T) → Either (typeOfᴱ H ∅ M ≮: T) (Warningᴱ H (typeCheckᴱ H ∅ M)) reflect-subtypingᴮ : ∀ H B {H′ B′ T} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → (typeOfᴮ H′ ∅ B′ ≮: T) → Either (typeOfᴮ H ∅ B ≮: T) (Warningᴮ H (typeCheckᴮ H ∅ B)) reflect-subtypingᴱ H (M $ N) (app₁ s) p = mapLR none-tgt-≮: app₁ (reflect-subtypingᴱ H M s (tgt-≮: p)) reflect-subtypingᴱ H (M $ N) (app₂ v s) p = Left (none-tgt-≮: (heap-weakening-≮:ᴱ ∅ H M (rednᴱ⊑ s) (tgt-≮: p))) reflect-subtypingᴱ H (M $ N) (beta (function f ⟨ var y ∈ T ⟩∈ U is B end) v refl q) p = Left (≡-trans-≮: (cong tgt (cong orAny (cong typeOfᴹᴼ q))) p) reflect-subtypingᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) p = Left p reflect-subtypingᴱ H (block var b ∈ T is B end) (block s) p = Left p reflect-subtypingᴱ H (block var b ∈ T is return (val v) ∙ B end) (return v) p = mapR BlockMismatch (swapLR (≮:-antitrans p)) reflect-subtypingᴱ H (block var b ∈ T is done end) done p = mapR BlockMismatch (swapLR (≮:-antitrans p)) reflect-subtypingᴱ H (binexp M op N) (binOp₀ s) p = {!!} reflect-subtypingᴱ H (binexp M op N) (binOp₁ s) p = Left p reflect-subtypingᴱ H (binexp M op N) (binOp₂ s) p = Left p reflect-subtypingᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) p = mapLR (heap-weakening-≮:ᴮ _ _ B (snoc defn)) (CONTRADICTION ∘ (≮:-antirefl (T ⇒ U))) (substitutivityᴮ _ B (addr a) f p) reflect-subtypingᴮ H (local var x ∈ T ← M ∙ B) (local s) p = Left (heap-weakening-≮:ᴮ (x ↦ T) H B (rednᴱ⊑ s) p) reflect-subtypingᴮ H (local var x ∈ T ← M ∙ B) (subst v) p = mapR LocalVarMismatch (substitutivityᴮ H B v x p) reflect-subtypingᴮ H (return M ∙ B) (return s) p = mapR return (reflect-subtypingᴱ H M s p) reflect-substitutionᴱ : ∀ {Γ T} H M v x → Warningᴱ H (typeCheckᴱ H Γ (M [ v / x ]ᴱ)) → Either (Warningᴱ H (typeCheckᴱ H (Γ ⊕ x ↦ T) M)) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T)) reflect-substitutionᴱ-whenever : ∀ {Γ T} H v x y (p : Dec(x ≡ y)) → Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever p)) → Either (Warningᴱ H (typeCheckᴱ H (Γ ⊕ x ↦ T) (var y))) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T)) reflect-substitutionᴮ : ∀ {Γ T} H B v x → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮ)) → Either (Warningᴮ H (typeCheckᴮ H (Γ ⊕ x ↦ T) B)) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T)) reflect-substitutionᴮ-unless : ∀ {Γ T U} H B v x y (r : Dec(x ≡ y)) → Warningᴮ H (typeCheckᴮ H (Γ ⊕ y ↦ U) (B [ v / x ]ᴮunless r)) → Either (Warningᴮ H (typeCheckᴮ H ((Γ ⊕ x ↦ T) ⊕ y ↦ U) B)) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T)) reflect-substitutionᴮ-unless-yes : ∀ {Γ Γ′ T} H B v x y (r : x ≡ y) → (Γ′ ≡ Γ) → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless yes r)) → Either (Warningᴮ H (typeCheckᴮ H Γ′ B)) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T)) reflect-substitutionᴮ-unless-no : ∀ {Γ Γ′ T} H B v x y (r : x ≢ y) → (Γ′ ≡ Γ ⊕ x ↦ T) → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless no r)) → Either (Warningᴮ H (typeCheckᴮ H Γ′ B)) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T)) reflect-substitutionᴱ H (var y) v x W = reflect-substitutionᴱ-whenever H v x y (x ≡ⱽ y) W reflect-substitutionᴱ H (val (addr a)) v x (UnallocatedAddress r) = Left (UnallocatedAddress r) reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) with substitutivityᴱ H N v x p reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Right W = Right (Right W) reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Left q with substitutivityᴱ H M v x (src-≮: q) reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Left q | Right W = Right (Right W) reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Left q | Left r = Left ((FunctionCallMismatch ∘ any-src-≮:) r) reflect-substitutionᴱ H (M $ N) v x (app₁ W) = mapL app₁ (reflect-substitutionᴱ H M v x W) reflect-substitutionᴱ H (M $ N) v x (app₂ W) = mapL app₂ (reflect-substitutionᴱ H N v x W) reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x (FunctionDefnMismatch q) = mapLR FunctionDefnMismatch Right (substitutivityᴮ-unless H B v x y (x ≡ⱽ y) q) reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x (function₁ W) = mapL function₁ (reflect-substitutionᴮ-unless H B v x y (x ≡ⱽ y) W) reflect-substitutionᴱ H (block var b ∈ T is B end) v x (BlockMismatch q) = mapLR BlockMismatch Right (substitutivityᴮ H B v x q) reflect-substitutionᴱ H (block var b ∈ T is B end) v x (block₁ W′) = mapL block₁ (reflect-substitutionᴮ H B v x W′) reflect-substitutionᴱ H (binexp M op N) x v (BinOpMismatch₁ q) = {!!} reflect-substitutionᴱ H (binexp M op N) x v (BinOpMismatch₂ q) = {!!} reflect-substitutionᴱ H (binexp M op N) x v (bin₁ W) = mapL bin₁ (reflect-substitutionᴱ H M x v W) reflect-substitutionᴱ H (binexp M op N) x v (bin₂ W) = mapL bin₂ (reflect-substitutionᴱ H N x v W) reflect-substitutionᴱ-whenever H a x x (yes refl) (UnallocatedAddress p) = Right (Left (UnallocatedAddress p)) reflect-substitutionᴱ-whenever H v x y (no p) (UnboundVariable q) = Left (UnboundVariable (trans (sym (⊕-lookup-miss x y _ _ p)) q)) reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x (FunctionDefnMismatch q) = mapLR FunctionDefnMismatch Right (substitutivityᴮ-unless H C v x y (x ≡ⱽ y) q) reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x (function₁ W) = mapL function₁ (reflect-substitutionᴮ-unless H C v x y (x ≡ⱽ y) W) reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x (function₂ W) = mapL function₂ (reflect-substitutionᴮ-unless H B v x f (x ≡ⱽ f) W) reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x (LocalVarMismatch q) = mapLR LocalVarMismatch Right (substitutivityᴱ H M v x q) reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x (local₁ W) = mapL local₁ (reflect-substitutionᴱ H M v x W) reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x (local₂ W) = mapL local₂ (reflect-substitutionᴮ-unless H B v x y (x ≡ⱽ y) W) reflect-substitutionᴮ H (return M ∙ B) v x (return W) = mapL return (reflect-substitutionᴱ H M v x W) reflect-substitutionᴮ-unless H B v x y (yes p) W = reflect-substitutionᴮ-unless-yes H B v x y p (⊕-over p) W reflect-substitutionᴮ-unless H B v x y (no p) W = reflect-substitutionᴮ-unless-no H B v x y p (⊕-swap p) W reflect-substitutionᴮ-unless-yes H B v x x refl refl W = Left W reflect-substitutionᴮ-unless-no H B v x y p refl W = reflect-substitutionᴮ H B v x W reflect-weakeningᴱ : ∀ Γ H M {H′} → (H ⊑ H′) → Warningᴱ H′ (typeCheckᴱ H′ Γ M) → Warningᴱ H (typeCheckᴱ H Γ M) reflect-weakeningᴮ : ∀ Γ H B {H′} → (H ⊑ H′) → Warningᴮ H′ (typeCheckᴮ H′ Γ B) → Warningᴮ H (typeCheckᴮ H Γ B) reflect-weakeningᴱ Γ H (var x) h (UnboundVariable p) = (UnboundVariable p) reflect-weakeningᴱ Γ H (val (addr a)) h (UnallocatedAddress p) = UnallocatedAddress (lookup-⊑-nothing a h p) reflect-weakeningᴱ Γ H (M $ N) h (FunctionCallMismatch p) = FunctionCallMismatch (heap-weakening-≮:ᴱ Γ H N h (any-src-≮: (heap-weakening-≮:ᴱ Γ H M h (src-≮: p)))) reflect-weakeningᴱ Γ H (M $ N) h (app₁ W) = app₁ (reflect-weakeningᴱ Γ H M h W) reflect-weakeningᴱ Γ H (M $ N) h (app₂ W) = app₂ (reflect-weakeningᴱ Γ H N h W) reflect-weakeningᴱ Γ H (binexp M op N) h (BinOpMismatch₁ p) = BinOpMismatch₁ {!!} -- (<:-BinOpWarning op (heap-weakeningᴱ Γ H M h) p) reflect-weakeningᴱ Γ H (binexp M op N) h (BinOpMismatch₂ p) = BinOpMismatch₂ {!!} -- (<:-BinOpWarning op (heap-weakeningᴱ Γ H N h) p) reflect-weakeningᴱ Γ H (binexp M op N) h (bin₁ W′) = bin₁ (reflect-weakeningᴱ Γ H M h W′) reflect-weakeningᴱ Γ H (binexp M op N) h (bin₂ W′) = bin₂ (reflect-weakeningᴱ Γ H N h W′) reflect-weakeningᴱ Γ H (function f ⟨ var y ∈ T ⟩∈ U is B end) h (FunctionDefnMismatch p) = FunctionDefnMismatch {!!} -- (<:-trans-≮: (heap-weakeningᴮ (Γ ⊕ y ↦ T) H B h) p) reflect-weakeningᴱ Γ H (function f ⟨ var y ∈ T ⟩∈ U is B end) h (function₁ W) = function₁ (reflect-weakeningᴮ (Γ ⊕ y ↦ T) H B h W) reflect-weakeningᴱ Γ H (block var b ∈ T is B end) h (BlockMismatch p) = BlockMismatch {!!} -- (<:-trans-≮: (heap-weakeningᴮ Γ H B h) p) reflect-weakeningᴱ Γ H (block var b ∈ T is B end) h (block₁ W) = block₁ (reflect-weakeningᴮ Γ H B h W) reflect-weakeningᴮ Γ H (return M ∙ B) h (return W) = return (reflect-weakeningᴱ Γ H M h W) reflect-weakeningᴮ Γ H (local var y ∈ T ← M ∙ B) h (LocalVarMismatch p) = LocalVarMismatch (heap-weakening-≮:ᴱ Γ H M h p) reflect-weakeningᴮ Γ H (local var y ∈ T ← M ∙ B) h (local₁ W) = local₁ (reflect-weakeningᴱ Γ H M h W) reflect-weakeningᴮ Γ H (local var y ∈ T ← M ∙ B) h (local₂ W) = local₂ (reflect-weakeningᴮ (Γ ⊕ y ↦ T) H B h W) reflect-weakeningᴮ Γ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (FunctionDefnMismatch p) = FunctionDefnMismatch (heap-weakening-≮:ᴮ (Γ ⊕ x ↦ T) H C h p) reflect-weakeningᴮ Γ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (function₁ W) = function₁ (reflect-weakeningᴮ (Γ ⊕ x ↦ T) H C h W) reflect-weakeningᴮ Γ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (function₂ W) = function₂ (reflect-weakeningᴮ (Γ ⊕ f ↦ (T ⇒ U)) H B h W) reflect-weakeningᴼ : ∀ H O {H′} → (H ⊑ H′) → Warningᴼ H′ (typeCheckᴼ H′ O) → Warningᴼ H (typeCheckᴼ H O) reflect-weakeningᴼ H (just function f ⟨ var x ∈ T ⟩∈ U is B end) h (FunctionDefnMismatch p) = FunctionDefnMismatch (heap-weakening-≮:ᴮ (x ↦ T) H B h p) reflect-weakeningᴼ H (just function f ⟨ var x ∈ T ⟩∈ U is B end) h (function₁ W) = function₁ (reflect-weakeningᴮ (x ↦ T) H B h W) reflectᴱ : ∀ H M {H′ M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → Warningᴱ H′ (typeCheckᴱ H′ ∅ M′) → Either (Warningᴱ H (typeCheckᴱ H ∅ M)) (Warningᴴ H (typeCheckᴴ H)) reflectᴮ : ∀ H B {H′ B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → Warningᴮ H′ (typeCheckᴮ H′ ∅ B′) → Either (Warningᴮ H (typeCheckᴮ H ∅ B)) (Warningᴴ H (typeCheckᴴ H)) reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) = cond (Left ∘ FunctionCallMismatch ∘ heap-weakening-≮:ᴱ ∅ H N (rednᴱ⊑ s) ∘ any-src-≮:) (Left ∘ app₁) (reflect-subtypingᴱ H M s (src-≮: p)) reflectᴱ H (M $ N) (app₁ s) (app₁ W′) = mapL app₁ (reflectᴱ H M s W′) reflectᴱ H (M $ N) (app₁ s) (app₂ W′) = Left (app₂ (reflect-weakeningᴱ ∅ H N (rednᴱ⊑ s) W′)) reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch q) = cond (Left ∘ FunctionCallMismatch ∘ any-src-≮: ∘ heap-weakening-≮:ᴱ ∅ H M (rednᴱ⊑ s) ∘ src-≮:) (Left ∘ app₂) (reflect-subtypingᴱ H N s q) reflectᴱ H (M $ N) (app₂ p s) (app₁ W′) = Left (app₁ (reflect-weakeningᴱ ∅ H M (rednᴱ⊑ s) W′)) reflectᴱ H (M $ N) (app₂ p s) (app₂ W′) = mapL app₂ (reflectᴱ H N s W′) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (BlockMismatch q) with substitutivityᴮ H B v x q reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (BlockMismatch q) | Left r = Right (addr a p (FunctionDefnMismatch r)) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (BlockMismatch q) | Right r = Left (FunctionCallMismatch (≮:-trans-≡ r ((cong src (cong orAny (cong typeOfᴹᴼ (sym p))))))) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) with reflect-substitutionᴮ _ B v x W′ reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | Left W = Right (addr a p (function₁ W)) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | Right (Left W) = Left (app₂ W) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | Right (Right q) = Left (FunctionCallMismatch (≮:-trans-≡ q (cong src (cong orAny (cong typeOfᴹᴼ (sym p)))))) reflectᴱ H (block var b ∈ T is B end) (block s) (BlockMismatch p) = Left (cond BlockMismatch block₁ (reflect-subtypingᴮ H B s p)) reflectᴱ H (block var b ∈ T is B end) (block s) (block₁ W′) = mapL block₁ (reflectᴮ H B s W′) reflectᴱ H (block var b ∈ T is B end) (return v) W′ = Left (block₁ (return W′)) reflectᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (UnallocatedAddress ()) reflectᴱ H (binexp M op N) (binOp₀ ()) (UnallocatedAddress p) reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) = Left (BinOpMismatch₁ {!!}) -- (<:-BinOpWarning op (preservationᴱ H M s) p)) reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₂ p) = Left (BinOpMismatch₂ {!!}) -- (<:-BinOpWarning op (heap-weakeningᴱ ∅ H N (rednᴱ⊑ s)) p)) reflectᴱ H (binexp M op N) (binOp₁ s) (bin₁ W′) = mapL bin₁ (reflectᴱ H M s W′) reflectᴱ H (binexp M op N) (binOp₁ s) (bin₂ W′) = Left (bin₂ (reflect-weakeningᴱ ∅ H N (rednᴱ⊑ s) W′)) reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₁ p) = Left (BinOpMismatch₁ {!!}) -- (<:-BinOpWarning op (heap-weakeningᴱ ∅ H M (rednᴱ⊑ s)) p)) reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) = Left (BinOpMismatch₂ {!!}) -- (<:-BinOpWarning op (preservationᴱ H N s) p)) reflectᴱ H (binexp M op N) (binOp₂ s) (bin₁ W′) = Left (bin₁ (reflect-weakeningᴱ ∅ H M (rednᴱ⊑ s) W′)) reflectᴱ H (binexp M op N) (binOp₂ s) (bin₂ W′) = mapL bin₂ (reflectᴱ H N s W′) reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (LocalVarMismatch p) = Left (cond LocalVarMismatch local₁ (reflect-subtypingᴱ H M s p)) reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (local₁ W′) = mapL local₁ (reflectᴱ H M s W′) reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (local₂ W′) = Left (local₂ (reflect-weakeningᴮ (x ↦ T) H B (rednᴱ⊑ s) W′)) reflectᴮ H (local var x ∈ T ← M ∙ B) (subst v) W′ = Left (cond local₂ (cond local₁ LocalVarMismatch) (reflect-substitutionᴮ H B v x W′)) reflectᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) W′ with reflect-substitutionᴮ _ B (addr a) f W′ reflectᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) W′ | Left W = Left (function₂ (reflect-weakeningᴮ (f ↦ (T ⇒ U)) H B (snoc defn) W)) reflectᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) W′ | Right (Left (UnallocatedAddress ())) reflectᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) W′ | Right (Right p) = CONTRADICTION (≮:-antirefl (T ⇒ U) p) reflectᴮ H (return M ∙ B) (return s) (return W′) = mapL return (reflectᴱ H M s W′) reflectᴴᴱ : ∀ H M {H′ M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → Warningᴴ H′ (typeCheckᴴ H′) → Either (Warningᴱ H (typeCheckᴱ H ∅ M)) (Warningᴴ H (typeCheckᴴ H)) reflectᴴᴮ : ∀ H B {H′ B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → Warningᴴ H′ (typeCheckᴴ H′) → Either (Warningᴮ H (typeCheckᴮ H ∅ B)) (Warningᴴ H (typeCheckᴴ H)) reflectᴴᴱ H (M $ N) (app₁ s) W = mapL app₁ (reflectᴴᴱ H M s W) reflectᴴᴱ H (M $ N) (app₂ v s) W = mapL app₂ (reflectᴴᴱ H N s W) reflectᴴᴱ H (M $ N) (beta O v refl p) W = Right W reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a p) (addr b refl W) with b ≡ᴬ a reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (addr b refl (FunctionDefnMismatch p)) | yes refl = Left (FunctionDefnMismatch (heap-weakening-≮:ᴮ (x ↦ T) H B (snoc defn) p)) reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (addr b refl (function₁ W)) | yes refl = Left (function₁ (reflect-weakeningᴮ (x ↦ T) H B (snoc defn) W)) reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a p) (addr b refl W) | no q = Right (addr b (lookup-not-allocated p q) (reflect-weakeningᴼ H _ (snoc p) W)) reflectᴴᴱ H (block var b ∈ T is B end) (block s) W = mapL block₁ (reflectᴴᴮ H B s W) reflectᴴᴱ H (block var b ∈ T is return (val v) ∙ B end) (return v) W = Right W reflectᴴᴱ H (block var b ∈ T is done end) done W = Right W reflectᴴᴱ H (binexp M op N) (binOp₀ s) W = Right W reflectᴴᴱ H (binexp M op N) (binOp₁ s) W = mapL bin₁ (reflectᴴᴱ H M s W) reflectᴴᴱ H (binexp M op N) (binOp₂ s) W = mapL bin₂ (reflectᴴᴱ H N s W) reflectᴴᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a p) (addr b refl W) with b ≡ᴬ a reflectᴴᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) (addr b refl (FunctionDefnMismatch p)) | yes refl = Left (FunctionDefnMismatch (heap-weakening-≮:ᴮ (x ↦ T) H C (snoc defn) p)) reflectᴴᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) (addr b refl (function₁ W)) | yes refl = Left (function₁ (reflect-weakeningᴮ (x ↦ T) H C (snoc defn) W)) reflectᴴᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a p) (addr b refl W) | no q = Right (addr b (lookup-not-allocated p q) (reflect-weakeningᴼ H _ (snoc p) W)) reflectᴴᴮ H (local var x ∈ T ← M ∙ B) (local s) W = mapL local₁ (reflectᴴᴱ H M s W) reflectᴴᴮ H (local var x ∈ T ← M ∙ B) (subst v) W = Right W reflectᴴᴮ H (return M ∙ B) (return s) W = mapL return (reflectᴴᴱ H M s W) reflect* : ∀ H B {H′ B′} → (H ⊢ B ⟶* B′ ⊣ H′) → Either (Warningᴮ H′ (typeCheckᴮ H′ ∅ B′)) (Warningᴴ H′ (typeCheckᴴ H′)) → Either (Warningᴮ H (typeCheckᴮ H ∅ B)) (Warningᴴ H (typeCheckᴴ H)) reflect* H B refl W = W reflect* H B (step s t) W = cond (reflectᴮ H B s) (reflectᴴᴮ H B s) (reflect* _ _ t W) isntNumber : ∀ H v → (valueType v ≢ number) → (typeOfᴱ H ∅ (val v) ≮: number) isntNumber = {!!} isntString : ∀ H v → (valueType v ≢ string) → (typeOfᴱ H ∅ (val v) ≮: string) isntString = {!!} isntFunction : ∀ H v {T U} → (valueType v ≢ function) → (typeOfᴱ H ∅ (val v) ≮: (T ⇒ U)) isntFunction = {!!} runtimeBinOpWarning : ∀ H {op} v → BinOpError op (valueType v) → BinOpWarning op (orAny (typeOfⱽ H v)) runtimeBinOpWarning H v (+ p) = + (isntNumber H v p) runtimeBinOpWarning H v (- p) = - (isntNumber H v p) runtimeBinOpWarning H v (* p) = * (isntNumber H v p) runtimeBinOpWarning H v (/ p) = / (isntNumber H v p) runtimeBinOpWarning H v (< p) = < (isntNumber H v p) runtimeBinOpWarning H v (> p) = > (isntNumber H v p) runtimeBinOpWarning H v (<= p) = <= (isntNumber H v p) runtimeBinOpWarning H v (>= p) = >= (isntNumber H v p) runtimeBinOpWarning H v (·· p) = ·· (isntString H v p) runtimeWarningᴱ : ∀ H M → RuntimeErrorᴱ H M → Warningᴱ H (typeCheckᴱ H ∅ M) runtimeWarningᴮ : ∀ H B → RuntimeErrorᴮ H B → Warningᴮ H (typeCheckᴮ H ∅ B) runtimeWarningᴱ H (var x) UnboundVariable = UnboundVariable refl runtimeWarningᴱ H (val (addr a)) (SEGV p) = UnallocatedAddress p runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) = FunctionCallMismatch (any-src-≮: (isntFunction H v p)) runtimeWarningᴱ H (M $ N) (app₁ err) = app₁ (runtimeWarningᴱ H M err) runtimeWarningᴱ H (M $ N) (app₂ err) = app₂ (runtimeWarningᴱ H N err) runtimeWarningᴱ H (block var b ∈ T is B end) (block err) = block₁ (runtimeWarningᴮ H B err) runtimeWarningᴱ H (binexp M op N) (BinOpMismatch₁ v w p) = BinOpMismatch₁ (runtimeBinOpWarning H v p) runtimeWarningᴱ H (binexp M op N) (BinOpMismatch₂ v w p) = BinOpMismatch₂ (runtimeBinOpWarning H w p) runtimeWarningᴱ H (binexp M op N) (bin₁ err) = bin₁ (runtimeWarningᴱ H M err) runtimeWarningᴱ H (binexp M op N) (bin₂ err) = bin₂ (runtimeWarningᴱ H N err) runtimeWarningᴮ H (local var x ∈ T ← M ∙ B) (local err) = local₁ (runtimeWarningᴱ H M err) runtimeWarningᴮ H (return M ∙ B) (return err) = return (runtimeWarningᴱ H M err) wellTypedProgramsDontGoWrong : ∀ H′ B B′ → (∅ᴴ ⊢ B ⟶* B′ ⊣ H′) → (RuntimeErrorᴮ H′ B′) → Warningᴮ ∅ᴴ (typeCheckᴮ ∅ᴴ ∅ B) wellTypedProgramsDontGoWrong H′ B B′ t err with reflect* ∅ᴴ B t {!!} wellTypedProgramsDontGoWrong H′ B B′ t err | Right (addr a refl ()) wellTypedProgramsDontGoWrong H′ B B′ t err | Left W = W