{-# OPTIONS --rewriting #-} open import Luau.Type using (Mode) module Luau.TypeCheck (m : Mode) where open import Agda.Builtin.Equality using (_≡_) open import FFI.Data.Maybe using (Maybe; just) open import Luau.Syntax using (Expr; Stat; Block; yes; nil; addr; var; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; name) open import Luau.Var using (Var) open import Luau.Addr using (Addr) open import Luau.Heap using (Heap; Object; function_is_end) renaming (_[_] to _[_]ᴴ) open import Luau.Value using (addr; val) open import Luau.Type using (Type; Mode; nil; bot; top; _⇒_; tgt) open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ) open import FFI.Data.Vector using (Vector) open import FFI.Data.Maybe using (Maybe; just; nothing) open import Properties.Product using (_×_; _,_) src : Type → Type src = Luau.Type.src m orBot : Maybe Type → Type orBot nothing = bot orBot (just T) = T data _⊢ᴮ_∈_ : VarCtxt → Block yes → Type → Set data _⊢ᴱ_∈_ : VarCtxt → Expr yes → Type → Set data _⊢ᴮ_∈_ where done : ∀ {Γ} → --------------- Γ ⊢ᴮ done ∈ nil return : ∀ {M B T U Γ} → Γ ⊢ᴱ M ∈ T → Γ ⊢ᴮ B ∈ U → --------------------- Γ ⊢ᴮ return M ∙ B ∈ T local : ∀ {x M B T U V Γ} → Γ ⊢ᴱ M ∈ U → (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V → -------------------------------- Γ ⊢ᴮ local var x ∈ T ← M ∙ B ∈ V function : ∀ f {x B C T U V W Γ} → (Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V → (Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W → ------------------------------------------------- Γ ⊢ᴮ function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B ∈ W data _⊢ᴱ_∈_ where nil : ∀ {Γ} → -------------- Γ ⊢ᴱ nil ∈ nil var : ∀ x {T Γ} → T ≡ orBot(Γ [ x ]ⱽ) → ---------------- Γ ⊢ᴱ (var x) ∈ T addr : ∀ a T {Γ} → ----------------- Γ ⊢ᴱ (addr a) ∈ T app : ∀ {M N T U Γ} → Γ ⊢ᴱ M ∈ T → Γ ⊢ᴱ N ∈ U → ---------------------- Γ ⊢ᴱ (M $ N) ∈ (tgt T) function : ∀ f {x B T U V Γ} → (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V → ----------------------------------------------------- Γ ⊢ᴱ (function f ⟨ var x ∈ T ⟩∈ U is B end) ∈ (T ⇒ U) block : ∀ b {B T Γ} → Γ ⊢ᴮ B ∈ T → --------------------------- Γ ⊢ᴱ (block b is B end) ∈ T data ⊢ᴼ_ : Maybe(Object yes) → Set where nothing : --------- ⊢ᴼ nothing function : ∀ f {x T U V B} → (x ↦ T) ⊢ᴮ B ∈ V → ---------------------------------------------- ⊢ᴼ (just function f ⟨ var x ∈ T ⟩∈ U is B end) ⊢ᴴ_ : Heap yes → Set ⊢ᴴ H = ∀ a {O} → (H [ a ]ᴴ ≡ O) → (⊢ᴼ O) _⊢ᴴᴱ_▷_∈_ : VarCtxt → Heap yes → Expr yes → Type → Set (Γ ⊢ᴴᴱ H ▷ M ∈ T) = (⊢ᴴ H) × (Γ ⊢ᴱ M ∈ T) _⊢ᴴᴮ_▷_∈_ : VarCtxt → Heap yes → Block yes → Type → Set (Γ ⊢ᴴᴮ H ▷ B ∈ T) = (⊢ᴴ H) × (Γ ⊢ᴮ B ∈ T)