------------------------------------------------------------------------------ -- Lua SciMark (2010-12-20). -- -- A literal translation of SciMark 2.0a, written in Java and C. -- Credits go to the original authors Roldan Pozo and Bruce Miller. -- See: http://math.nist.gov/scimark2/ ------------------------------------------------------------------------------ -- Copyright (C) 2006-2010 Mike Pall. All rights reserved. -- -- Permission is hereby granted, free of charge, to any person obtaining -- a copy of this software and associated documentation files (the -- "Software"), to deal in the Software without restriction, including -- without limitation the rights to use, copy, modify, merge, publish, -- distribute, sublicense, and/or sell copies of the Software, and to -- permit persons to whom the Software is furnished to do so, subject to -- the following conditions: -- -- The above copyright notice and this permission notice shall be -- included in all copies or substantial portions of the Software. -- -- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF -- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. -- IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY -- CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, -- TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE -- SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -- -- [ MIT license: http://www.opensource.org/licenses/mit-license.php ] ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ -- Modification to be compatible with Lua 5.3 ------------------------------------------------------------------------------ local function prequire(name) local success, result = pcall(require, name); return if success then result else nil end local bench = script and require(script.Parent.bench_support) or prequire("bench_support") or require("../../bench_support") function test() if table and table.unpack then unpack = table.unpack end ------------------------------------------------------------------------------ local SCIMARK_VERSION = "2010-12-10" local SCIMARK_COPYRIGHT = "Copyright (C) 2006-2010 Mike Pall" local MIN_TIME = 0.2 local RANDOM_SEED = 101009 -- Must be odd. local SIZE_SELECT = "small" local benchmarks = { "FFT", "SOR", "MC", "SPARSE", "LU", small = { FFT = { 1024 }, SOR = { 100 }, MC = { }, SPARSE = { 1000, 5000 }, LU = { 100 }, }, large = { FFT = { 1048576 }, SOR = { 1000 }, MC = { }, SPARSE = { 100000, 1000000 }, LU = { 1000 }, }, } local abs, log, sin, floor = math.abs, math.log, math.sin, math.floor local pi, clock = math.pi, os.clock local format = string.format ------------------------------------------------------------------------------ -- Select array type: Lua tables or native (FFI) arrays ------------------------------------------------------------------------------ local darray, iarray local function array_init() if jit and jit.status and jit.status() then local ok, ffi = pcall(require, "ffi") if ok then darray = ffi.typeof("double[?]") iarray = ffi.typeof("int[?]") return end end function darray(n) return {} end iarray = darray end ------------------------------------------------------------------------------ -- This is a Lagged Fibonacci Pseudo-random Number Generator with -- j, k, M = 5, 17, 31. Pretty weak, but same as C/Java SciMark. ------------------------------------------------------------------------------ local rand, rand_init if jit and jit.status and jit.status() then -- LJ2 has bit operations and zero-based arrays (internally). local bit = require("bit") local band, sar = bit.band, bit.arshift function rand_init(seed) local Rm, Rj, Ri = iarray(17), 16, 11 for i=0,16 do Rm[i] = 0 end for i=16,0,-1 do seed = band(seed*9069, 0x7fffffff) Rm[i] = seed end function rand() local i = band(Ri+1, sar(Ri-16, 31)) local j = band(Rj+1, sar(Rj-16, 31)) Ri, Rj = i, j local k = band(Rm[i] - Rm[j], 0x7fffffff) Rm[j] = k return k * (1.0/2147483647.0) end end else -- Better for standard Lua with one-based arrays and without bit operations. function rand_init(seed) local Rm, Rj = {}, 1 for i=1,17 do Rm[i] = 0 end for i=17,1,-1 do seed = (seed*9069) % (2^31) Rm[i] = seed end function rand() local j, m = Rj, Rm local h = j - 5 if h < 1 then h = h + 17 end local k = m[h] - m[j] if k < 0 then k = k + 2147483647 end m[j] = k if j < 17 then Rj = j + 1 else Rj = 1 end return k * (1.0/2147483647.0) end end end local function random_vector(n) local v = darray(n+1) for x=1,n do v[x] = rand() end return v end local function random_matrix(m, n) local a = {} for y=1,m do local v = darray(n+1) a[y] = v for x=1,n do v[x] = rand() end end return a end ------------------------------------------------------------------------------ -- FFT: Fast Fourier Transform. ------------------------------------------------------------------------------ local function fft_bitreverse(v, n) local j = 0 for i=0,2*n-4,2 do if i < j then v[i+1], v[i+2], v[j+1], v[j+2] = v[j+1], v[j+2], v[i+1], v[i+2] end local k = n while k <= j do j = j - k; k = k / 2 end j = j + k end end local function fft_transform(v, n, dir) if n <= 1 then return end fft_bitreverse(v, n) local dual = 1 repeat local dual2 = 2*dual for i=1,2*n-1,2*dual2 do local j = i+dual2 local ir, ii = v[i], v[i+1] local jr, ji = v[j], v[j+1] v[j], v[j+1] = ir - jr, ii - ji v[i], v[i+1] = ir + jr, ii + ji end local theta = dir * pi / dual local s, s2 = sin(theta), 2.0 * sin(theta * 0.5)^2 local wr, wi = 1.0, 0.0 for a=3,dual2-1,2 do wr, wi = wr - s*wi - s2*wr, wi + s*wr - s2*wi for i=a,a+2*(n-dual2),2*dual2 do local j = i+dual2 local jr, ji = v[j], v[j+1] local dr, di = wr*jr - wi*ji, wr*ji + wi*jr local ir, ii = v[i], v[i+1] v[j], v[j+1] = ir - dr, ii - di v[i], v[i+1] = ir + dr, ii + di end end dual = dual2 until dual >= n end function benchmarks.FFT(n) local l2n = log(n)/log(2) if l2n % 1 ~= 0 then io.stderr:write("Error: FFT data length is not a power of 2\n") os.exit(1) end local v = random_vector(n*2) return function(cycles) local norm = 1.0 / n for p=1,cycles do fft_transform(v, n, -1) fft_transform(v, n, 1) for i=1,n*2 do v[i] = v[i] * norm end end return ((5*n-2)*l2n + 2*(n+1)) * cycles end end ------------------------------------------------------------------------------ -- SOR: Jacobi Successive Over-Relaxation. ------------------------------------------------------------------------------ local function sor_run(mat, m, n, cycles, omega) local om4, om1 = omega*0.25, 1.0-omega m = m - 1 n = n - 1 for i=1,cycles do for y=2,m do local v, vp, vn = mat[y], mat[y-1], mat[y+1] for x=2,n do v[x] = om4*((vp[x]+vn[x])+(v[x-1]+v[x+1])) + om1*v[x] end end end end function benchmarks.SOR(n) local mat = random_matrix(n, n) return function(cycles) sor_run(mat, n, n, cycles, 1.25) return (n-1)*(n-1)*cycles*6 end end ------------------------------------------------------------------------------ -- MC: Monte Carlo Integration. ------------------------------------------------------------------------------ local function mc_integrate(cycles) local under_curve = 0 local rand = rand for i=1,cycles do local x = rand() local y = rand() if x*x + y*y <= 1.0 then under_curve = under_curve + 1 end end return (under_curve/cycles) * 4 end function benchmarks.MC() return function(cycles) local res = mc_integrate(cycles) assert(math.sqrt(cycles)*math.abs(res-math.pi) < 5.0, "bad MC result") return cycles * 4 -- Way off, but same as SciMark in C/Java. end end ------------------------------------------------------------------------------ -- Sparse Matrix Multiplication. ------------------------------------------------------------------------------ local function sparse_mult(n, cycles, vy, val, row, col, vx) for p=1,cycles do for r=1,n do local sum = 0 for i=row[r],row[r+1]-1 do sum = sum + vx[col[i]] * val[i] end vy[r] = sum end end end function benchmarks.SPARSE(n, nz) local nr = floor(nz/n) local anz = nr*n local vx = random_vector(n) local val = random_vector(anz) local vy, col, row = darray(n+1), iarray(nz+1), iarray(n+2) row[1] = 1 for r=1,n do local step = floor(r/nr) if step < 1 then step = 1 end local rr = row[r] row[r+1] = rr+nr for i=0,nr-1 do col[rr+i] = 1+i*step end end return function(cycles) sparse_mult(n, cycles, vy, val, row, col, vx) return anz*cycles*2 end end ------------------------------------------------------------------------------ -- LU: Dense Matrix Factorization. ------------------------------------------------------------------------------ local function lu_factor(a, pivot, m, n) local min_m_n = m < n and m or n for j=1,min_m_n do local jp, t = j, abs(a[j][j]) for i=j+1,m do local ab = abs(a[i][j]) if ab > t then jp = i t = ab end end pivot[j] = jp if a[jp][j] == 0 then error("zero pivot") end if jp ~= j then a[j], a[jp] = a[jp], a[j] end if j < m then local recp = 1.0 / a[j][j] for k=j+1,m do local v = a[k] v[j] = v[j] * recp end end if j < min_m_n then for i=j+1,m do local vi, vj = a[i], a[j] local eij = vi[j] for k=j+1,n do vi[k] = vi[k] - eij * vj[k] end end end end end local function matrix_alloc(m, n) local a = {} for y=1,m do a[y] = darray(n+1) end return a end local function matrix_copy(dst, src, m, n) for y=1,m do local vd, vs = dst[y], src[y] for x=1,n do vd[x] = vs[x] end end end function benchmarks.LU(n) local mat = random_matrix(n, n) local tmp = matrix_alloc(n, n) local pivot = iarray(n+1) return function(cycles) for i=1,cycles do matrix_copy(tmp, mat, n, n) lu_factor(tmp, pivot, n, n) end return 2.0/3.0*n*n*n*cycles end end ------------------------------------------------------------------------------ -- Main program. ------------------------------------------------------------------------------ local function printf(...) print(format(...)) end local function fmtparams(p1, p2) if p2 then return format("[%d, %d]", p1, p2) elseif p1 then return format("[%d]", p1) end return "" end local function measure(min_time, name, ...) array_init() rand_init(RANDOM_SEED) local run = benchmarks[name](...) --[[local cycles = 1 repeat local tm = clock() local flops = run(cycles, ...) tm = clock() - tm if tm >= min_time then local res = flops / tm * 1.0e-6 local p1, p2 = ... printf("%-7s %8.2f %s\n", name, res, fmtparams(...)) return res end cycles = cycles * 2 until false]] run(10, ...) return 10 end printf("Lua SciMark %s based on SciMark 2.0a. %s.\n\n", SCIMARK_VERSION, SCIMARK_COPYRIGHT) while arg and arg[1] do local a = table.remove(arg, 1) if a == "-noffi" then package.preload.ffi = nil elseif a == "-small" then SIZE_SELECT = "small" elseif a == "-large" then SIZE_SELECT = "large" elseif benchmarks[a] then local p = benchmarks[SIZE_SELECT][a] measure(MIN_TIME, a, tonumber(arg[1]) or p[1], tonumber(arg[2]) or p[2]) return else printf("Usage: scimark [-noffi] [-small|-large] [BENCH params...]\n\n") printf("BENCH -small -large\n") printf("---------------------------------------\n") for _,name in ipairs(benchmarks) do printf("%-7s %-13s %s\n", name, fmtparams(unpack(benchmarks.small[name])), fmtparams(unpack(benchmarks.large[name]))) end printf("\n") os.exit(1) end end local params = benchmarks[SIZE_SELECT] local sum = 0 for _,name in ipairs(benchmarks) do sum = sum + measure(MIN_TIME, name, unpack(params[name])) end --printf("\nSciMark %8.2f [%s problem sizes]\n", sum / #benchmarks, SIZE_SELECT) end bench.runCode(test, "scimark")