{-# OPTIONS --rewriting #-} open import Luau.Type using (Mode) module Properties.TypeCheck (m : Mode) where open import Agda.Builtin.Equality using (_≡_; refl) open import FFI.Data.Maybe using (Maybe; just; nothing) open import FFI.Data.Either using (Either) open import Luau.TypeCheck(m) using (_⊢ᴱ_∈_; _⊢ᴮ_∈_; nil; var; addr; app; function; block; done; return; local) open import Luau.Syntax using (Block; Expr; yes; nil; var; addr; _$_; function_is_end; block_is_end; _∙_; return; done; local_←_; _⟨_⟩; _⟨_⟩∈_; var_∈_; name; fun; arg) open import Luau.Type using (Type; nil; top; bot; _⇒_; tgt) open import Luau.VarCtxt using (VarCtxt; ∅; _↦_; _⊕_↦_; _⋒_; _⊝_) renaming (_[_] to _[_]ⱽ) open import Luau.AddrCtxt using (AddrCtxt) renaming (_[_] to _[_]ᴬ) open import Luau.Addr using (Addr) open import Luau.Var using (Var; _≡ⱽ_) open import Luau.Value using (Value; nil; addr; val) open import Luau.Heap using (Heap; HeapValue; function_is_end) renaming (_[_] to _[_]ᴴ) open import Properties.Dec using (yes; no) open import Properties.Equality using (_≢_; sym; trans; cong) open import Properties.Remember using (remember; _,_) src : Type → Type src = Luau.Type.src m declaredTypeᴴ : Maybe(HeapValue yes) → Type declaredTypeᴴ nothing = bot declaredTypeᴴ (just function f ⟨ var x ∈ S ⟩∈ T is B end) = (S ⇒ T) typeOfⱽ : Heap yes → Value → Type typeOfⱽ H nil = nil typeOfⱽ H (addr a) = declaredTypeᴴ (H [ a ]ᴴ) typeOfᴱ : Heap yes → VarCtxt → (Expr yes) → Type typeOfᴮ : Heap yes → VarCtxt → (Block yes) → Type typeOfᴱ H Γ nil = nil typeOfᴱ H Γ (var x) = Γ [ x ]ⱽ typeOfᴱ H Γ (addr a) = declaredTypeᴴ (H [ a ]ᴴ) typeOfᴱ H Γ (M $ N) = tgt(typeOfᴱ H Γ M) typeOfᴱ H Γ (function f ⟨ var x ∈ S ⟩∈ T is B end) = S ⇒ T typeOfᴱ H Γ (block b is B end) = typeOfᴮ H Γ B typeOfᴮ H Γ (function f ⟨ var x ∈ S ⟩∈ T is C end ∙ B) = typeOfᴮ H (Γ ⊕ f ↦ (S ⇒ T)) B typeOfᴮ H Γ (local var x ∈ T ← M ∙ B) = typeOfᴮ H (Γ ⊕ x ↦ T) B typeOfᴮ H Γ (return M ∙ B) = typeOfᴱ H Γ M typeOfᴮ H Γ done = nil typeOfᴴ : Heap yes → Maybe(HeapValue yes) → Type typeOfᴴ H nothing = bot typeOfᴴ H (just function f ⟨ var x ∈ S ⟩∈ T is B end) = (S ⇒ typeOfᴮ H (x ↦ S) B) typeOfᴱⱽ : ∀ {H Γ} v → (typeOfᴱ H Γ (val v) ≡ typeOfⱽ H v) typeOfᴱⱽ nil = refl typeOfᴱⱽ (addr a) = refl typeCheckᴱ : ∀ H Γ M → (Γ ⊢ᴱ M ∈ (typeOfᴱ H Γ M)) typeCheckᴮ : ∀ H Γ B → (Γ ⊢ᴮ B ∈ (typeOfᴮ H Γ B)) typeCheckᴱ H Γ nil = nil typeCheckᴱ H Γ (var x) = var x refl typeCheckᴱ H Γ (addr a) = addr a (declaredTypeᴴ (H [ a ]ᴴ)) typeCheckᴱ H Γ (M $ N) = app (typeCheckᴱ H Γ M) (typeCheckᴱ H Γ N) typeCheckᴱ H Γ (function f ⟨ var x ∈ T ⟩∈ U is B end) = function f (typeCheckᴮ H (Γ ⊕ x ↦ T) B) typeCheckᴱ H Γ (block b is B end) = block b (typeCheckᴮ H Γ B) typeCheckᴮ H Γ (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) = function f (typeCheckᴮ H (Γ ⊕ x ↦ T) C) (typeCheckᴮ H (Γ ⊕ f ↦ (T ⇒ U)) B) typeCheckᴮ H Γ (local var x ∈ T ← M ∙ B) = local (typeCheckᴱ H Γ M) (typeCheckᴮ H (Γ ⊕ x ↦ T) B) typeCheckᴮ H Γ (return M ∙ B) = return (typeCheckᴱ H Γ M) (typeCheckᴮ H Γ B) typeCheckᴮ H Γ done = done