
Goals of the Luau Type System, Two Years On

LILY BROWN, ANDY FRIESEN, and ALAN JEFFREY, Roblox, USA

In HATRA 2021, we presented The Goals Of The Luau Type System, describing the human factors of designing
a type system for a language with a heterogeneous developer community. In this extended abstract we provide
a progress report on the work so far, focusing on the unexpected aspects: semantic subtyping and type error
suppression.

ACM Reference Format:
Lily Brown, Andy Friesen, and Alan Jeffrey. 2023. Goals of the Luau Type System, Two Years On. In HATRA
’23: Human Aspects of Types and Reasoning Assistants. ACM, New York, NY, USA, 2 pages.

1 RECAP
Luau [7] is the scripting language used by the Roblox [8] platform for shared immersive experiences.
Luau extends the Lua [5] language, notably by providing type-driven tooling such as autocomplete
and API documentation (as well as traditional type error reporting). Roblox has hundreds of millions
of users, and millions of creators, ranging from children learning to program for the first time to
professional development studios.
In HATRA 2021, we presented The Goals Of The Luau Type System [1], describing the human

factors issues with designing a type system for a language with a heterogeneous developer com-
munity. The design flows from the needs of the different communities: beginners are focused on
immediate goals (“the stairs should light up when a player walks on them”) and less on the code
quality concerns of more experienced developers; for all users type-driven tooling is important for
productivity. These needs result in a design with two modes:

• non-strict mode, aimed at non-professionals, focused on minimizing false positives, and
• strict mode, aimed at professionals, focused onminimizing false negatives (i.e. type soundness).

2 PROGRESS
In the two years since the position paper, we have been making changes to the Luau type system
to achieve the goals we set out. Most of the changes were straightforward, but two were large
changes in how we thought about the design of the type system: replacing the existing syntactic
subtyping algorithm by semantic subtyping, and treating gradual typing as type error suppression.

Semantic subtyping interprets types as sets of values, and subtyping as set inclusion [3]. This is
aligned with theminimize false positives goal of Luau non-strict mode, since semantic subtyping only
reports a failure of subtyping when there is a value which inhabits the candidate subtype, but not
the candidate supertype. This has the added benefit of improving error reporting in the prototype
implementation: since the prototype is constructive, the witness for the failure of subtyping can
help drive error reports. See our technical blog for more details [4].
Rather than the gradual typing approach of [9], which uses consistent subtyping where any ≲

𝑇 ≲ any for any type 𝑇 , we adopt an approach based on error suppression, where any is an
error-suppressing type, and any failures of subtyping involving error-suppressing types are not
reported. Users can explicitly suppress type errors by declaring variables with type any, and since
an expression with a type error has an error-suppressing type we avoid cascading errors. Error
suppression is in production Luau, and is mechanically verified [2].

This work is licensed under a Creative Commons Attribution 4.0 International License.
HATRA ’23, October 2023, Portugal, Spain
© 2023 Roblox.

1



HATRA ’23, October 2023, Portugal, Spain Lily Brown, Andy Friesen, and Alan Jeffrey

3 FURTHERWORK
Currently the type inference system uses greedy inference, which is very sensitive to order of
declarations, and can easily result in false positives. We plan to replace this by some form of local
type inference [6].

Currently, non-strict mode operates in the style of gradual type systems by inferring any as the
type for local variables. This does not play well with type-directed tooling, for example any cannot
provide autocomplete suggestions. Local type inference will infer more precise union types, and
hence better type-driven tooling.
At some point, we hope that error suppression will be the only difference between strict mode

and non-strict mode.

REFERENCES
[1] L. Brown, A. Friesen, and A. S. A. Jeffrey. 2021. Goals of the Luau Type System. In Proc. Human Aspects of Types and

Reasoning Assistants. https://asaj.org/papers/hatra21.pdf
[2] L. Brown and A. S. A. Jeffrey. 2023. Luau Prototype Typechecker. https://github.com/luau-lang/agda-typeck
[3] G. Castagna and A. Frisch. 2005. A Gentle Introduction to Semantic Subtyping. In Proc. Principles and Practice of

Declarative Programming.
[4] A. S. A. Jeffrey. 2022. Semantic Subtyping in Luau. Roblox Technical Blog. https://blog.roblox.com/2022/11/semantic-

subtyping-luau/
[5] Lua.org and PUC-Rio. 2023. The Lua Programming Language. https://lua.org
[6] B. C. Pierce and D. N. Turner. 2000. Local Type Inference. ACM Trans. Program. Lang. Syst. 22, 1 (2000), 1–44.
[7] Roblox. 2023. The Luau Programming Language. https://luau-lang.org
[8] Roblox. 2023. Reimagining the way people come together. https://corp.roblox.com
[9] J. G. Siek and W. Taha. 2007. Gradual Typing for Objects. In Proc. European Conf Object-Oriented Programming. 2–27.

2

https://asaj.org/papers/hatra21.pdf
https://github.com/luau-lang/agda-typeck
https://blog.roblox.com/2022/11/semantic-subtyping-luau/
https://blog.roblox.com/2022/11/semantic-subtyping-luau/
https://lua.org
https://luau-lang.org
https://corp.roblox.com

	Abstract
	1 Recap
	2 Progress
	3 Further work
	References

