// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details #include "CodeGenX64.h" #include "Luau/AssemblyBuilderX64.h" #include "Luau/UnwindBuilder.h" #include "NativeState.h" #include "EmitCommonX64.h" #include "lstate.h" /* An overview of native environment stack setup that we are making in the entry function: * Each line is 8 bytes, stack grows downwards. * * | ... previous frames ... * | rdx home space | (unused) * | rcx home space | (unused) * | return address | * | ... saved non-volatile registers ... <-- rsp + kStackSize + kLocalsSize * | unused | for 16 byte alignment of the stack * | sCode | * | sClosure | <-- rsp + kStackSize * | argument 6 | <-- rsp + 40 * | argument 5 | <-- rsp + 32 * | r9 home space | * | r8 home space | * | rdx home space | * | rcx home space | <-- rsp points here * * Arguments to our entry function are saved to home space only on Windows. * Space for arguments to function we call is always reserved, but used only on Windows. * * Right now we use a frame pointer, but because of a fixed layout we can omit it in the future */ namespace Luau { namespace CodeGen { namespace X64 { struct EntryLocations { Label start; Label prologueEnd; Label epilogueStart; }; static EntryLocations buildEntryFunction(AssemblyBuilderX64& build, UnwindBuilder& unwind) { EntryLocations locations; build.align(kFunctionAlignment, X64::AlignmentDataX64::Ud2); locations.start = build.setLabel(); unwind.startFunction(); // Save common non-volatile registers if (build.abi == ABIX64::SystemV) { // We need to use a standard rbp-based frame setup for debuggers to work with JIT code build.push(rbp); build.mov(rbp, rsp); } build.push(rbx); build.push(r12); build.push(r13); build.push(r14); build.push(r15); if (build.abi == ABIX64::Windows) { // Save non-volatile registers that are specific to Windows x64 ABI build.push(rdi); build.push(rsi); // On Windows, rbp is available as a general-purpose non-volatile register; we currently don't use it, but we need to push an even number // of registers for stack alignment... build.push(rbp); // TODO: once we start using non-volatile SIMD registers on Windows, we will save those here } // Allocate stack space (reg home area + local data) build.sub(rsp, kStackSize + kLocalsSize); locations.prologueEnd = build.setLabel(); uint32_t prologueSize = build.getLabelOffset(locations.prologueEnd) - build.getLabelOffset(locations.start); if (build.abi == ABIX64::SystemV) unwind.prologueX64(prologueSize, kStackSize + kLocalsSize, /* setupFrame= */ true, {rbx, r12, r13, r14, r15}); else if (build.abi == ABIX64::Windows) unwind.prologueX64(prologueSize, kStackSize + kLocalsSize, /* setupFrame= */ false, {rbx, r12, r13, r14, r15, rdi, rsi, rbp}); // Setup native execution environment build.mov(rState, rArg1); build.mov(rNativeContext, rArg4); build.mov(rBase, qword[rState + offsetof(lua_State, base)]); // L->base build.mov(rax, qword[rState + offsetof(lua_State, ci)]); // L->ci build.mov(rax, qword[rax + offsetof(CallInfo, func)]); // L->ci->func build.mov(rax, qword[rax + offsetof(TValue, value.gc)]); // L->ci->func->value.gc aka cl build.mov(sClosure, rax); build.mov(rConstants, qword[rArg2 + offsetof(Proto, k)]); // proto->k build.mov(rax, qword[rArg2 + offsetof(Proto, code)]); // proto->code build.mov(sCode, rax); // Jump to the specified instruction; further control flow will be handled with custom ABI with register setup from EmitCommonX64.h build.jmp(rArg3); // Even though we jumped away, we will return here in the end locations.epilogueStart = build.setLabel(); // Cleanup and exit build.add(rsp, kStackSize + kLocalsSize); if (build.abi == ABIX64::Windows) { build.pop(rbp); build.pop(rsi); build.pop(rdi); } build.pop(r15); build.pop(r14); build.pop(r13); build.pop(r12); build.pop(rbx); if (build.abi == ABIX64::SystemV) build.pop(rbp); build.ret(); // Our entry function is special, it spans the whole remaining code area unwind.finishFunction(build.getLabelOffset(locations.start), kFullBlockFuncton); return locations; } bool initHeaderFunctions(NativeState& data) { AssemblyBuilderX64 build(/* logText= */ false); UnwindBuilder& unwind = *data.unwindBuilder.get(); unwind.startInfo(UnwindBuilder::X64); EntryLocations entryLocations = buildEntryFunction(build, unwind); build.finalize(); unwind.finishInfo(); LUAU_ASSERT(build.data.empty()); uint8_t* codeStart = nullptr; if (!data.codeAllocator.allocate( build.data.data(), int(build.data.size()), build.code.data(), int(build.code.size()), data.gateData, data.gateDataSize, codeStart)) { LUAU_ASSERT(!"Failed to create entry function"); return false; } // Set the offset at the begining so that functions in new blocks will not overlay the locations // specified by the unwind information of the entry function unwind.setBeginOffset(build.getLabelOffset(entryLocations.prologueEnd)); data.context.gateEntry = codeStart + build.getLabelOffset(entryLocations.start); data.context.gateExit = codeStart + build.getLabelOffset(entryLocations.epilogueStart); return true; } void assembleHelpers(X64::AssemblyBuilderX64& build, ModuleHelpers& helpers) { if (build.logText) build.logAppend("; exitContinueVm\n"); helpers.exitContinueVm = build.setLabel(); emitExit(build, /* continueInVm */ true); if (build.logText) build.logAppend("; exitNoContinueVm\n"); helpers.exitNoContinueVm = build.setLabel(); emitExit(build, /* continueInVm */ false); if (build.logText) build.logAppend("; continueCallInVm\n"); helpers.continueCallInVm = build.setLabel(); emitContinueCallInVm(build); if (build.logText) build.logAppend("; return\n"); helpers.return_ = build.setLabel(); emitReturn(build, helpers); } } // namespace X64 } // namespace CodeGen } // namespace Luau