{-# OPTIONS --rewriting #-} module Properties.OverloadedFunctions where open import FFI.Data.Either using (Either; Left; Right) open import Luau.OverloadedFunctions using (resolve) open import Luau.Subtyping using (_<:_; _≮:_; witness; _,_; left; right) open import Luau.Type using (Type; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_; src) open import Properties.Contradiction using (CONTRADICTION) open import Properties.DecSubtyping using (dec-subtyping) open import Properties.Subtyping using (<:-refl; <:-trans; <:-union; <:-∪-left; <:-∪-right; <:-∪-lub; <:-intersect; <:-∩-left; <:-∩-right; <:-∩-glb; <:-impl-¬≮:; <:-function; <:-never; <:-never-left; <:-never-right; <:-function-∩; <:-function-∩-∪; <:-∩-dist-∪; <:-trans-≮:; never-≮:; ≮:-∩-left; ≮:-∩-right; ≮:-∪-left; ≮:-∪-right) -- Function overload resolution respects subtyping resolve-<: : ∀ F {S T} → (S <: T) → (resolve F S <: resolve F T) resolve-<: nil p = <:-refl resolve-<: (F ⇒ F₁) p = <:-refl resolve-<: never p = <:-refl resolve-<: unknown p = <:-refl resolve-<: boolean p = <:-refl resolve-<: number p = <:-refl resolve-<: string p = <:-refl resolve-<: (F ∪ G) p = <:-union (resolve-<: F p) (resolve-<: G p) resolve-<: (F ∩ G) {S} {T} p with dec-subtyping S (src F) | dec-subtyping S (src G) | dec-subtyping T (src F) | dec-subtyping T (src G) resolve-<: (F ∩ G) {S} {T} p | Left q₁ | Left q₂ | Left q₃ | Left q₄ = <:-union (resolve-<: F p) (resolve-<: G p) resolve-<: (F ∩ G) {S} {T} p | _ | Left q₂ | _ | Right q₄ = CONTRADICTION (<:-impl-¬≮: (<:-trans p q₄) q₂) resolve-<: (F ∩ G) {S} {T} p | Left q₁ | _ | Right q₃ | _ = CONTRADICTION (<:-impl-¬≮: (<:-trans p q₃) q₁) resolve-<: (F ∩ G) {S} {T} p | Left q₁ | Right q₂ | Left q₃ | Left q₄ = <:-trans (resolve-<: G p) <:-∪-right resolve-<: (F ∩ G) {S} {T} p | Left q₁ | Right q₂ | Left q₃ | Right q₄ = resolve-<: G p resolve-<: (F ∩ G) {S} {T} p | Right q₁ | Left q₂ | Left q₃ | Left q₄ = <:-trans (resolve-<: F p) <:-∪-left resolve-<: (F ∩ G) {S} {T} p | Right q₁ | Left q₂ | Right q₃ | Left q₄ = resolve-<: F p resolve-<: (F ∩ G) {S} {T} p | Right q₁ | Right q₂ | Left q₃ | Left q₄ = <:-trans <:-∩-left (<:-trans (resolve-<: F p) <:-∪-left) resolve-<: (F ∩ G) {S} {T} p | Right q₁ | Right q₂ | Left q₃ | Right q₄ = <:-trans <:-∩-right (resolve-<: G p) resolve-<: (F ∩ G) {S} {T} p | Right q₁ | Right q₂ | Right q₃ | Left q₄ = <:-trans <:-∩-left (resolve-<: F p) resolve-<: (F ∩ G) {S} {T} p | Right q₁ | Right q₂ | Right q₃ | Right q₄ = <:-intersect (resolve-<: F p) (resolve-<: G p) -- A function type is a subtype of any of its overloadings resolve-intro : ∀ F V → (V ≮: never) → (V <: src F) → F <: (V ⇒ resolve F V) resolve-intro nil V p₁ p₂ = CONTRADICTION (<:-impl-¬≮: p₂ p₁) resolve-intro (S ⇒ T) V p₁ p₂ = <:-function p₂ <:-refl resolve-intro never V p₁ p₂ = <:-never resolve-intro unknown V p₁ p₂ = CONTRADICTION (<:-impl-¬≮: p₂ p₁) resolve-intro boolean V p₁ p₂ = CONTRADICTION (<:-impl-¬≮: p₂ p₁) resolve-intro number V p₁ p₂ = CONTRADICTION (<:-impl-¬≮: p₂ p₁) resolve-intro string V p₁ p₂ = CONTRADICTION (<:-impl-¬≮: p₂ p₁) resolve-intro (F ∪ G) V p₁ p₂ = <:-∪-lub (<:-trans (resolve-intro F V p₁ (<:-trans p₂ <:-∩-left)) (<:-function <:-refl <:-∪-left)) (<:-trans (resolve-intro G V p₁ (<:-trans p₂ <:-∩-right)) (<:-function <:-refl <:-∪-right)) resolve-intro (F ∩ G) V p₁ p₂ with dec-subtyping V (src F) | dec-subtyping V (src G) resolve-intro (F ∩ G) V p₁ p₂ | Left q₁ | Left q₂ = <:-trans (<:-intersect (resolve-intro F (V ∩ src F) (<:-never-right p₂ q₂) <:-∩-right) ((resolve-intro G (V ∩ src G) (<:-never-left p₂ q₁) <:-∩-right))) (<:-trans <:-function-∩-∪ (<:-function (<:-trans (<:-∩-glb <:-refl p₂) <:-∩-dist-∪) (<:-union (resolve-<: F <:-∩-left) (resolve-<: G <:-∩-left)))) resolve-intro (F ∩ G) V p₁ p₂ | Left q₁ | Right q₂ = <:-trans <:-∩-right (resolve-intro G V p₁ q₂) resolve-intro (F ∩ G) V p₁ p₂ | Right q₁ | Left q₂ = <:-trans <:-∩-left (resolve-intro F V p₁ q₁) resolve-intro (F ∩ G) V p₁ p₂ | Right q₁ | Right q₂ = <:-trans (<:-intersect (resolve-intro F V p₁ q₁) (resolve-intro G V p₁ q₂)) <:-function-∩ resolve⁻¹ : Type → Type → Type resolve⁻¹ nil U = unknown resolve⁻¹ (S ⇒ T) U with dec-subtyping T U resolve⁻¹ (S ⇒ T) U | Left p = never resolve⁻¹ (S ⇒ T) U | Right p = S resolve⁻¹ never U = {!!} resolve⁻¹ unknown U = {!!} resolve⁻¹ boolean U = {!!} resolve⁻¹ number U = {!!} resolve⁻¹ string U = {!!} resolve⁻¹ (F ∪ G) U = resolve⁻¹ F U ∩ resolve⁻¹ G U resolve⁻¹ (F ∩ G) U = {!!} uuu : ∀ F U → (resolve⁻¹ F U <: src F) uuu = ? www : ∀ F U V → (V ≮: never) → (V <: src F) → (resolve F V ≮: U) → (V ≮: resolve⁻¹ F U) www nil U V p q w = CONTRADICTION (<:-impl-¬≮: <:-never w) www (S ⇒ T) U V p q w with dec-subtyping T U www (S ⇒ T) U V p q w | Left r = p www (S ⇒ T) U V p q w | Right r = CONTRADICTION (<:-impl-¬≮: r w) www never U V p q w = {!!} www unknown U V p q w = {!!} www boolean U V p q w = {!!} www number U V p q w = {!!} www string U V p q w = {!!} www (F ∪ G) U V p q w = {!!} www (F ∩ G) U V p q w with dec-subtyping V (src F) | dec-subtyping V (src G) www (F ∩ G) U V p q w | Left r₁ | Left r₂ = {!!} www (F ∩ G) U V p q w | Left r₁ | Right x = {!!} www (F ∩ G) U V p q w | Right x | y = {!!} xxx : ∀ F U V → (V ≮: never) → (resolve F V ≮: U) → (V ≮: resolve⁻¹ F U) xxx nil U V p q = CONTRADICTION (<:-impl-¬≮: <:-never q) xxx (S ⇒ T) U V p q with dec-subtyping T U xxx (S ⇒ T) U V p q | Left r = p xxx (S ⇒ T) U V p q | Right r = CONTRADICTION (<:-impl-¬≮: r q) xxx never U V p q = {!!} xxx unknown U V p q = {!!} xxx boolean U V p q = {!!} xxx number U V p q = {!!} xxx string U V p q = {!!} xxx (F ∪ G) U V p (witness t (left q) r) = ≮:-∩-left (xxx F U V p (witness t q r)) xxx (F ∪ G) U V p (witness t (right q) r) = ≮:-∩-right (xxx G U V p (witness t q r)) xxx (F ∩ G) U V p q with dec-subtyping V (src F) | dec-subtyping V (src G) xxx (F ∩ G) U V p (witness t (left q₁) q₂) | Left r₁ | Left r₂ = {!xxx F U V p (witness t q₁ q₂)!} xxx (F ∩ G) U V p (witness t (right q₁) q₂) | Left r₁ | Left r₂ = {!!} xxx (F ∩ G) U V p q | Left r₁ | Right r₂ = {!!} xxx (F ∩ G) U V p q | Right x | r₃ = {!!} yyy : ∀ F U V → (V ≮: resolve⁻¹ F U) → (resolve F V ≮: U) yyy nil U V w = {!w!} yyy (S ⇒ T) U V w = {!!} yyy never U V w = {!!} yyy unknown U V w = {!!} yyy boolean U V w = {!!} yyy number U V w = {!!} yyy string U V w = {!!} yyy (F ∪ G) U V (witness t p (left r)) = ≮:-∪-left (yyy F U V (witness t p r)) yyy (F ∪ G) U V (witness t p (right r)) = ≮:-∪-right (yyy G U V (witness t p r)) yyy (F ∩ F₁) U V w = {!!}