// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details #include "IrLoweringX64.h" #include "Luau/CodeGen.h" #include "Luau/DenseHash.h" #include "Luau/IrAnalysis.h" #include "Luau/IrCallWrapperX64.h" #include "Luau/IrDump.h" #include "Luau/IrUtils.h" #include "EmitBuiltinsX64.h" #include "EmitCommonX64.h" #include "EmitInstructionX64.h" #include "NativeState.h" #include "lstate.h" namespace Luau { namespace CodeGen { namespace X64 { IrLoweringX64::IrLoweringX64(AssemblyBuilderX64& build, ModuleHelpers& helpers, NativeState& data, IrFunction& function) : build(build) , helpers(helpers) , data(data) , function(function) , regs(build, function) , valueTracker(function) { // In order to allocate registers during lowering, we need to know where instruction results are last used updateLastUseLocations(function); valueTracker.setRestoreCallack(®s, [](void* context, IrInst& inst) { ((IrRegAllocX64*)context)->restore(inst, false); }); build.align(kFunctionAlignment, X64::AlignmentDataX64::Ud2); } void IrLoweringX64::storeDoubleAsFloat(OperandX64 dst, IrOp src) { ScopedRegX64 tmp{regs, SizeX64::xmmword}; if (src.kind == IrOpKind::Constant) { build.vmovss(tmp.reg, build.f32(float(doubleOp(src)))); } else if (src.kind == IrOpKind::Inst) { build.vcvtsd2ss(tmp.reg, regOp(src), regOp(src)); } else { LUAU_ASSERT(!"Unsupported instruction form"); } build.vmovss(dst, tmp.reg); } void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next) { regs.currInstIdx = index; valueTracker.beforeInstLowering(inst); switch (inst.cmd) { case IrCmd::LOAD_TAG: inst.regX64 = regs.allocReg(SizeX64::dword, index); if (inst.a.kind == IrOpKind::VmReg) build.mov(inst.regX64, luauRegTag(vmRegOp(inst.a))); else if (inst.a.kind == IrOpKind::VmConst) build.mov(inst.regX64, luauConstantTag(vmConstOp(inst.a))); // If we have a register, we assume it's a pointer to TValue // We might introduce explicit operand types in the future to make this more robust else if (inst.a.kind == IrOpKind::Inst) build.mov(inst.regX64, dword[regOp(inst.a) + offsetof(TValue, tt)]); else LUAU_ASSERT(!"Unsupported instruction form"); break; case IrCmd::LOAD_POINTER: inst.regX64 = regs.allocReg(SizeX64::qword, index); if (inst.a.kind == IrOpKind::VmReg) build.mov(inst.regX64, luauRegValue(vmRegOp(inst.a))); else if (inst.a.kind == IrOpKind::VmConst) build.mov(inst.regX64, luauConstantValue(vmConstOp(inst.a))); // If we have a register, we assume it's a pointer to TValue // We might introduce explicit operand types in the future to make this more robust else if (inst.a.kind == IrOpKind::Inst) build.mov(inst.regX64, qword[regOp(inst.a) + offsetof(TValue, value)]); else LUAU_ASSERT(!"Unsupported instruction form"); break; case IrCmd::LOAD_DOUBLE: inst.regX64 = regs.allocReg(SizeX64::xmmword, index); if (inst.a.kind == IrOpKind::VmReg) build.vmovsd(inst.regX64, luauRegValue(vmRegOp(inst.a))); else if (inst.a.kind == IrOpKind::VmConst) build.vmovsd(inst.regX64, luauConstantValue(vmConstOp(inst.a))); else LUAU_ASSERT(!"Unsupported instruction form"); break; case IrCmd::LOAD_INT: inst.regX64 = regs.allocReg(SizeX64::dword, index); build.mov(inst.regX64, luauRegValueInt(vmRegOp(inst.a))); break; case IrCmd::LOAD_TVALUE: inst.regX64 = regs.allocReg(SizeX64::xmmword, index); if (inst.a.kind == IrOpKind::VmReg) build.vmovups(inst.regX64, luauReg(vmRegOp(inst.a))); else if (inst.a.kind == IrOpKind::VmConst) build.vmovups(inst.regX64, luauConstant(vmConstOp(inst.a))); else if (inst.a.kind == IrOpKind::Inst) build.vmovups(inst.regX64, xmmword[regOp(inst.a)]); else LUAU_ASSERT(!"Unsupported instruction form"); break; case IrCmd::LOAD_NODE_VALUE_TV: inst.regX64 = regs.allocReg(SizeX64::xmmword, index); build.vmovups(inst.regX64, luauNodeValue(regOp(inst.a))); break; case IrCmd::LOAD_ENV: inst.regX64 = regs.allocReg(SizeX64::qword, index); build.mov(inst.regX64, sClosure); build.mov(inst.regX64, qword[inst.regX64 + offsetof(Closure, env)]); break; case IrCmd::GET_ARR_ADDR: if (inst.b.kind == IrOpKind::Inst) { inst.regX64 = regs.allocRegOrReuse(SizeX64::qword, index, {inst.b}); if (dwordReg(inst.regX64) != regOp(inst.b)) build.mov(dwordReg(inst.regX64), regOp(inst.b)); build.shl(dwordReg(inst.regX64), kTValueSizeLog2); build.add(inst.regX64, qword[regOp(inst.a) + offsetof(Table, array)]); } else if (inst.b.kind == IrOpKind::Constant) { inst.regX64 = regs.allocRegOrReuse(SizeX64::qword, index, {inst.a}); build.mov(inst.regX64, qword[regOp(inst.a) + offsetof(Table, array)]); if (intOp(inst.b) != 0) build.lea(inst.regX64, addr[inst.regX64 + intOp(inst.b) * sizeof(TValue)]); } else { LUAU_ASSERT(!"Unsupported instruction form"); } break; case IrCmd::GET_SLOT_NODE_ADDR: { inst.regX64 = regs.allocReg(SizeX64::qword, index); ScopedRegX64 tmp{regs, SizeX64::qword}; getTableNodeAtCachedSlot(build, tmp.reg, inst.regX64, regOp(inst.a), uintOp(inst.b)); break; } case IrCmd::GET_HASH_NODE_ADDR: { // Custom bit shift value can only be placed in cl ScopedRegX64 shiftTmp{regs, regs.takeReg(rcx, kInvalidInstIdx)}; inst.regX64 = regs.allocReg(SizeX64::qword, index); ScopedRegX64 tmp{regs, SizeX64::qword}; build.mov(inst.regX64, qword[regOp(inst.a) + offsetof(Table, node)]); build.mov(dwordReg(tmp.reg), 1); build.mov(byteReg(shiftTmp.reg), byte[regOp(inst.a) + offsetof(Table, lsizenode)]); build.shl(dwordReg(tmp.reg), byteReg(shiftTmp.reg)); build.dec(dwordReg(tmp.reg)); build.and_(dwordReg(tmp.reg), uintOp(inst.b)); build.shl(tmp.reg, kLuaNodeSizeLog2); build.add(inst.regX64, tmp.reg); break; }; case IrCmd::STORE_TAG: if (inst.b.kind == IrOpKind::Constant) build.mov(luauRegTag(vmRegOp(inst.a)), tagOp(inst.b)); else LUAU_ASSERT(!"Unsupported instruction form"); break; case IrCmd::STORE_POINTER: build.mov(luauRegValue(vmRegOp(inst.a)), regOp(inst.b)); break; case IrCmd::STORE_DOUBLE: if (inst.b.kind == IrOpKind::Constant) { ScopedRegX64 tmp{regs, SizeX64::xmmword}; build.vmovsd(tmp.reg, build.f64(doubleOp(inst.b))); build.vmovsd(luauRegValue(vmRegOp(inst.a)), tmp.reg); } else if (inst.b.kind == IrOpKind::Inst) { build.vmovsd(luauRegValue(vmRegOp(inst.a)), regOp(inst.b)); } else { LUAU_ASSERT(!"Unsupported instruction form"); } break; case IrCmd::STORE_INT: if (inst.b.kind == IrOpKind::Constant) build.mov(luauRegValueInt(vmRegOp(inst.a)), intOp(inst.b)); else if (inst.b.kind == IrOpKind::Inst) build.mov(luauRegValueInt(vmRegOp(inst.a)), regOp(inst.b)); else LUAU_ASSERT(!"Unsupported instruction form"); break; case IrCmd::STORE_VECTOR: storeDoubleAsFloat(luauRegValueVector(vmRegOp(inst.a), 0), inst.b); storeDoubleAsFloat(luauRegValueVector(vmRegOp(inst.a), 1), inst.c); storeDoubleAsFloat(luauRegValueVector(vmRegOp(inst.a), 2), inst.d); break; case IrCmd::STORE_TVALUE: if (inst.a.kind == IrOpKind::VmReg) build.vmovups(luauReg(vmRegOp(inst.a)), regOp(inst.b)); else if (inst.a.kind == IrOpKind::Inst) build.vmovups(xmmword[regOp(inst.a)], regOp(inst.b)); else LUAU_ASSERT(!"Unsupported instruction form"); break; case IrCmd::STORE_NODE_VALUE_TV: build.vmovups(luauNodeValue(regOp(inst.a)), regOp(inst.b)); break; case IrCmd::ADD_INT: inst.regX64 = regs.allocRegOrReuse(SizeX64::dword, index, {inst.a}); if (inst.b.kind == IrOpKind::Inst) build.lea(inst.regX64, addr[regOp(inst.a) + regOp(inst.b)]); else if (inst.regX64 == regOp(inst.a) && intOp(inst.b) == 1) build.inc(inst.regX64); else if (inst.regX64 == regOp(inst.a)) build.add(inst.regX64, intOp(inst.b)); else build.lea(inst.regX64, addr[regOp(inst.a) + intOp(inst.b)]); break; case IrCmd::SUB_INT: inst.regX64 = regs.allocRegOrReuse(SizeX64::dword, index, {inst.a}); if (inst.regX64 == regOp(inst.a) && intOp(inst.b) == 1) build.dec(inst.regX64); else if (inst.regX64 == regOp(inst.a)) build.sub(inst.regX64, intOp(inst.b)); else build.lea(inst.regX64, addr[regOp(inst.a) - intOp(inst.b)]); break; case IrCmd::ADD_NUM: inst.regX64 = regs.allocRegOrReuse(SizeX64::xmmword, index, {inst.a, inst.b}); if (inst.a.kind == IrOpKind::Constant) { ScopedRegX64 tmp{regs, SizeX64::xmmword}; build.vmovsd(tmp.reg, memRegDoubleOp(inst.a)); build.vaddsd(inst.regX64, tmp.reg, memRegDoubleOp(inst.b)); } else { build.vaddsd(inst.regX64, regOp(inst.a), memRegDoubleOp(inst.b)); } break; case IrCmd::SUB_NUM: inst.regX64 = regs.allocRegOrReuse(SizeX64::xmmword, index, {inst.a, inst.b}); if (inst.a.kind == IrOpKind::Constant) { ScopedRegX64 tmp{regs, SizeX64::xmmword}; build.vmovsd(tmp.reg, memRegDoubleOp(inst.a)); build.vsubsd(inst.regX64, tmp.reg, memRegDoubleOp(inst.b)); } else { build.vsubsd(inst.regX64, regOp(inst.a), memRegDoubleOp(inst.b)); } break; case IrCmd::MUL_NUM: inst.regX64 = regs.allocRegOrReuse(SizeX64::xmmword, index, {inst.a, inst.b}); if (inst.a.kind == IrOpKind::Constant) { ScopedRegX64 tmp{regs, SizeX64::xmmword}; build.vmovsd(tmp.reg, memRegDoubleOp(inst.a)); build.vmulsd(inst.regX64, tmp.reg, memRegDoubleOp(inst.b)); } else { build.vmulsd(inst.regX64, regOp(inst.a), memRegDoubleOp(inst.b)); } break; case IrCmd::DIV_NUM: inst.regX64 = regs.allocRegOrReuse(SizeX64::xmmword, index, {inst.a, inst.b}); if (inst.a.kind == IrOpKind::Constant) { ScopedRegX64 tmp{regs, SizeX64::xmmword}; build.vmovsd(tmp.reg, memRegDoubleOp(inst.a)); build.vdivsd(inst.regX64, tmp.reg, memRegDoubleOp(inst.b)); } else { build.vdivsd(inst.regX64, regOp(inst.a), memRegDoubleOp(inst.b)); } break; case IrCmd::MOD_NUM: { inst.regX64 = regs.allocRegOrReuse(SizeX64::xmmword, index, {inst.a, inst.b}); ScopedRegX64 optLhsTmp{regs}; RegisterX64 lhs; if (inst.a.kind == IrOpKind::Constant) { optLhsTmp.alloc(SizeX64::xmmword); build.vmovsd(optLhsTmp.reg, memRegDoubleOp(inst.a)); lhs = optLhsTmp.reg; } else { lhs = regOp(inst.a); } if (inst.b.kind == IrOpKind::Inst) { ScopedRegX64 tmp{regs, SizeX64::xmmword}; build.vdivsd(tmp.reg, lhs, memRegDoubleOp(inst.b)); build.vroundsd(tmp.reg, tmp.reg, tmp.reg, RoundingModeX64::RoundToNegativeInfinity); build.vmulsd(tmp.reg, tmp.reg, memRegDoubleOp(inst.b)); build.vsubsd(inst.regX64, lhs, tmp.reg); } else { ScopedRegX64 tmp1{regs, SizeX64::xmmword}; ScopedRegX64 tmp2{regs, SizeX64::xmmword}; build.vmovsd(tmp1.reg, memRegDoubleOp(inst.b)); build.vdivsd(tmp2.reg, lhs, tmp1.reg); build.vroundsd(tmp2.reg, tmp2.reg, tmp2.reg, RoundingModeX64::RoundToNegativeInfinity); build.vmulsd(tmp1.reg, tmp2.reg, tmp1.reg); build.vsubsd(inst.regX64, lhs, tmp1.reg); } break; } case IrCmd::POW_NUM: { IrCallWrapperX64 callWrap(regs, build, index); callWrap.addArgument(SizeX64::xmmword, memRegDoubleOp(inst.a), inst.a); callWrap.addArgument(SizeX64::xmmword, memRegDoubleOp(inst.b), inst.b); callWrap.call(qword[rNativeContext + offsetof(NativeContext, libm_pow)]); inst.regX64 = regs.takeReg(xmm0, index); break; } case IrCmd::MIN_NUM: inst.regX64 = regs.allocRegOrReuse(SizeX64::xmmword, index, {inst.a, inst.b}); if (inst.a.kind == IrOpKind::Constant) { ScopedRegX64 tmp{regs, SizeX64::xmmword}; build.vmovsd(tmp.reg, memRegDoubleOp(inst.a)); build.vminsd(inst.regX64, tmp.reg, memRegDoubleOp(inst.b)); } else { build.vminsd(inst.regX64, regOp(inst.a), memRegDoubleOp(inst.b)); } break; case IrCmd::MAX_NUM: inst.regX64 = regs.allocRegOrReuse(SizeX64::xmmword, index, {inst.a, inst.b}); if (inst.a.kind == IrOpKind::Constant) { ScopedRegX64 tmp{regs, SizeX64::xmmword}; build.vmovsd(tmp.reg, memRegDoubleOp(inst.a)); build.vmaxsd(inst.regX64, tmp.reg, memRegDoubleOp(inst.b)); } else { build.vmaxsd(inst.regX64, regOp(inst.a), memRegDoubleOp(inst.b)); } break; case IrCmd::UNM_NUM: { inst.regX64 = regs.allocRegOrReuse(SizeX64::xmmword, index, {inst.a}); RegisterX64 src = regOp(inst.a); if (inst.regX64 == src) { build.vxorpd(inst.regX64, inst.regX64, build.f64(-0.0)); } else { build.vmovsd(inst.regX64, src, src); build.vxorpd(inst.regX64, inst.regX64, build.f64(-0.0)); } break; } case IrCmd::FLOOR_NUM: inst.regX64 = regs.allocRegOrReuse(SizeX64::xmmword, index, {inst.a}); build.vroundsd(inst.regX64, inst.regX64, memRegDoubleOp(inst.a), RoundingModeX64::RoundToNegativeInfinity); break; case IrCmd::CEIL_NUM: inst.regX64 = regs.allocRegOrReuse(SizeX64::xmmword, index, {inst.a}); build.vroundsd(inst.regX64, inst.regX64, memRegDoubleOp(inst.a), RoundingModeX64::RoundToPositiveInfinity); break; case IrCmd::ROUND_NUM: { inst.regX64 = regs.allocRegOrReuse(SizeX64::xmmword, index, {inst.a}); ScopedRegX64 tmp1{regs, SizeX64::xmmword}; ScopedRegX64 tmp2{regs, SizeX64::xmmword}; if (inst.a.kind != IrOpKind::Inst) build.vmovsd(inst.regX64, memRegDoubleOp(inst.a)); else if (regOp(inst.a) != inst.regX64) build.vmovsd(inst.regX64, inst.regX64, regOp(inst.a)); build.vandpd(tmp1.reg, inst.regX64, build.f64x2(-0.0, -0.0)); build.vmovsd(tmp2.reg, build.i64(0x3fdfffffffffffff)); // 0.49999999999999994 build.vorpd(tmp1.reg, tmp1.reg, tmp2.reg); build.vaddsd(inst.regX64, inst.regX64, tmp1.reg); build.vroundsd(inst.regX64, inst.regX64, inst.regX64, RoundingModeX64::RoundToZero); break; } case IrCmd::SQRT_NUM: inst.regX64 = regs.allocRegOrReuse(SizeX64::xmmword, index, {inst.a}); build.vsqrtsd(inst.regX64, inst.regX64, memRegDoubleOp(inst.a)); break; case IrCmd::ABS_NUM: inst.regX64 = regs.allocRegOrReuse(SizeX64::xmmword, index, {inst.a}); if (inst.a.kind != IrOpKind::Inst) build.vmovsd(inst.regX64, memRegDoubleOp(inst.a)); else if (regOp(inst.a) != inst.regX64) build.vmovsd(inst.regX64, inst.regX64, regOp(inst.a)); build.vandpd(inst.regX64, inst.regX64, build.i64(~(1LL << 63))); break; case IrCmd::NOT_ANY: { // TODO: if we have a single user which is a STORE_INT, we are missing the opportunity to write directly to target inst.regX64 = regs.allocRegOrReuse(SizeX64::dword, index, {inst.a, inst.b}); Label saveone, savezero, exit; if (inst.a.kind == IrOpKind::Constant) { // Other cases should've been constant folded LUAU_ASSERT(tagOp(inst.a) == LUA_TBOOLEAN); } else { build.cmp(regOp(inst.a), LUA_TNIL); build.jcc(ConditionX64::Equal, saveone); build.cmp(regOp(inst.a), LUA_TBOOLEAN); build.jcc(ConditionX64::NotEqual, savezero); } build.cmp(regOp(inst.b), 0); build.jcc(ConditionX64::Equal, saveone); build.setLabel(savezero); build.mov(inst.regX64, 0); build.jmp(exit); build.setLabel(saveone); build.mov(inst.regX64, 1); build.setLabel(exit); break; } case IrCmd::JUMP: jumpOrFallthrough(blockOp(inst.a), next); break; case IrCmd::JUMP_IF_TRUTHY: jumpIfTruthy(build, vmRegOp(inst.a), labelOp(inst.b), labelOp(inst.c)); jumpOrFallthrough(blockOp(inst.c), next); break; case IrCmd::JUMP_IF_FALSY: jumpIfFalsy(build, vmRegOp(inst.a), labelOp(inst.b), labelOp(inst.c)); jumpOrFallthrough(blockOp(inst.c), next); break; case IrCmd::JUMP_EQ_TAG: { LUAU_ASSERT(inst.b.kind == IrOpKind::Inst || inst.b.kind == IrOpKind::Constant); OperandX64 opb = inst.b.kind == IrOpKind::Inst ? regOp(inst.b) : OperandX64(tagOp(inst.b)); build.cmp(memRegTagOp(inst.a), opb); if (isFallthroughBlock(blockOp(inst.d), next)) { build.jcc(ConditionX64::Equal, labelOp(inst.c)); jumpOrFallthrough(blockOp(inst.d), next); } else { build.jcc(ConditionX64::NotEqual, labelOp(inst.d)); jumpOrFallthrough(blockOp(inst.c), next); } break; } case IrCmd::JUMP_EQ_INT: build.cmp(regOp(inst.a), intOp(inst.b)); build.jcc(ConditionX64::Equal, labelOp(inst.c)); jumpOrFallthrough(blockOp(inst.d), next); break; case IrCmd::JUMP_LT_INT: build.cmp(regOp(inst.a), intOp(inst.b)); build.jcc(ConditionX64::Less, labelOp(inst.c)); jumpOrFallthrough(blockOp(inst.d), next); break; case IrCmd::JUMP_GE_UINT: build.cmp(regOp(inst.a), uintOp(inst.b)); build.jcc(ConditionX64::AboveEqual, labelOp(inst.c)); jumpOrFallthrough(blockOp(inst.d), next); break; case IrCmd::JUMP_EQ_POINTER: build.cmp(regOp(inst.a), regOp(inst.b)); build.jcc(ConditionX64::Equal, labelOp(inst.c)); jumpOrFallthrough(blockOp(inst.d), next); break; case IrCmd::JUMP_CMP_NUM: { IrCondition cond = conditionOp(inst.c); ScopedRegX64 tmp{regs, SizeX64::xmmword}; // TODO: jumpOnNumberCmp should work on IrCondition directly jumpOnNumberCmp(build, tmp.reg, memRegDoubleOp(inst.a), memRegDoubleOp(inst.b), cond, labelOp(inst.d)); jumpOrFallthrough(blockOp(inst.e), next); break; } case IrCmd::JUMP_CMP_ANY: jumpOnAnyCmpFallback(regs, build, vmRegOp(inst.a), vmRegOp(inst.b), conditionOp(inst.c), labelOp(inst.d)); jumpOrFallthrough(blockOp(inst.e), next); break; case IrCmd::JUMP_SLOT_MATCH: { ScopedRegX64 tmp{regs, SizeX64::qword}; jumpIfNodeKeyNotInExpectedSlot(build, tmp.reg, regOp(inst.a), luauConstantValue(vmConstOp(inst.b)), labelOp(inst.d)); jumpOrFallthrough(blockOp(inst.c), next); break; } case IrCmd::TABLE_LEN: { IrCallWrapperX64 callWrap(regs, build, index); callWrap.addArgument(SizeX64::qword, regOp(inst.a), inst.a); callWrap.call(qword[rNativeContext + offsetof(NativeContext, luaH_getn)]); inst.regX64 = regs.allocReg(SizeX64::xmmword, index); build.vcvtsi2sd(inst.regX64, inst.regX64, eax); break; } case IrCmd::NEW_TABLE: { IrCallWrapperX64 callWrap(regs, build, index); callWrap.addArgument(SizeX64::qword, rState); callWrap.addArgument(SizeX64::dword, int32_t(uintOp(inst.a))); callWrap.addArgument(SizeX64::dword, int32_t(uintOp(inst.b))); callWrap.call(qword[rNativeContext + offsetof(NativeContext, luaH_new)]); inst.regX64 = regs.takeReg(rax, index); break; } case IrCmd::DUP_TABLE: { IrCallWrapperX64 callWrap(regs, build, index); callWrap.addArgument(SizeX64::qword, rState); callWrap.addArgument(SizeX64::qword, regOp(inst.a), inst.a); callWrap.call(qword[rNativeContext + offsetof(NativeContext, luaH_clone)]); inst.regX64 = regs.takeReg(rax, index); break; } case IrCmd::TRY_NUM_TO_INDEX: { inst.regX64 = regs.allocReg(SizeX64::dword, index); ScopedRegX64 tmp{regs, SizeX64::xmmword}; convertNumberToIndexOrJump(build, tmp.reg, regOp(inst.a), inst.regX64, labelOp(inst.b)); break; } case IrCmd::TRY_CALL_FASTGETTM: { ScopedRegX64 tmp{regs, SizeX64::qword}; build.mov(tmp.reg, qword[regOp(inst.a) + offsetof(Table, metatable)]); regs.freeLastUseReg(function.instOp(inst.a), index); // Release before the call if it's the last use build.test(tmp.reg, tmp.reg); build.jcc(ConditionX64::Zero, labelOp(inst.c)); // No metatable build.test(byte[tmp.reg + offsetof(Table, tmcache)], 1 << intOp(inst.b)); build.jcc(ConditionX64::NotZero, labelOp(inst.c)); // No tag method ScopedRegX64 tmp2{regs, SizeX64::qword}; build.mov(tmp2.reg, qword[rState + offsetof(lua_State, global)]); { ScopedSpills spillGuard(regs); IrCallWrapperX64 callWrap(regs, build, index); callWrap.addArgument(SizeX64::qword, tmp); callWrap.addArgument(SizeX64::qword, intOp(inst.b)); callWrap.addArgument(SizeX64::qword, qword[tmp2.release() + offsetof(global_State, tmname) + intOp(inst.b) * sizeof(TString*)]); callWrap.call(qword[rNativeContext + offsetof(NativeContext, luaT_gettm)]); } inst.regX64 = regs.takeReg(rax, index); break; } case IrCmd::INT_TO_NUM: inst.regX64 = regs.allocReg(SizeX64::xmmword, index); build.vcvtsi2sd(inst.regX64, inst.regX64, regOp(inst.a)); break; case IrCmd::UINT_TO_NUM: inst.regX64 = regs.allocReg(SizeX64::xmmword, index); build.vcvtsi2sd(inst.regX64, inst.regX64, qwordReg(regOp(inst.a))); break; case IrCmd::NUM_TO_INT: inst.regX64 = regs.allocReg(SizeX64::dword, index); build.vcvttsd2si(inst.regX64, memRegDoubleOp(inst.a)); break; case IrCmd::NUM_TO_UINT: inst.regX64 = regs.allocReg(SizeX64::dword, index); build.vcvttsd2si(qwordReg(inst.regX64), memRegDoubleOp(inst.a)); break; case IrCmd::ADJUST_STACK_TO_REG: { ScopedRegX64 tmp{regs, SizeX64::qword}; if (inst.b.kind == IrOpKind::Constant) { build.lea(tmp.reg, addr[rBase + (vmRegOp(inst.a) + intOp(inst.b)) * sizeof(TValue)]); build.mov(qword[rState + offsetof(lua_State, top)], tmp.reg); } else if (inst.b.kind == IrOpKind::Inst) { build.mov(dwordReg(tmp.reg), regOp(inst.b)); build.shl(tmp.reg, kTValueSizeLog2); build.lea(tmp.reg, addr[rBase + tmp.reg + vmRegOp(inst.a) * sizeof(TValue)]); build.mov(qword[rState + offsetof(lua_State, top)], tmp.reg); } else { LUAU_ASSERT(!"Unsupported instruction form"); } break; } case IrCmd::ADJUST_STACK_TO_TOP: { ScopedRegX64 tmp{regs, SizeX64::qword}; build.mov(tmp.reg, qword[rState + offsetof(lua_State, ci)]); build.mov(tmp.reg, qword[tmp.reg + offsetof(CallInfo, top)]); build.mov(qword[rState + offsetof(lua_State, top)], tmp.reg); break; } case IrCmd::FASTCALL: emitBuiltin(regs, build, uintOp(inst.a), vmRegOp(inst.b), vmRegOp(inst.c), inst.d, intOp(inst.e), intOp(inst.f)); break; case IrCmd::INVOKE_FASTCALL: { unsigned bfid = uintOp(inst.a); OperandX64 args = 0; if (inst.d.kind == IrOpKind::VmReg) args = luauRegAddress(vmRegOp(inst.d)); else if (inst.d.kind == IrOpKind::VmConst) args = luauConstantAddress(vmConstOp(inst.d)); else LUAU_ASSERT(boolOp(inst.d) == false); int ra = vmRegOp(inst.b); int arg = vmRegOp(inst.c); int nparams = intOp(inst.e); int nresults = intOp(inst.f); ScopedRegX64 func{regs, SizeX64::qword}; build.mov(func.reg, qword[rNativeContext + offsetof(NativeContext, luauF_table) + bfid * sizeof(luau_FastFunction)]); IrCallWrapperX64 callWrap(regs, build, index); callWrap.addArgument(SizeX64::qword, rState); callWrap.addArgument(SizeX64::qword, luauRegAddress(ra)); callWrap.addArgument(SizeX64::qword, luauRegAddress(arg)); callWrap.addArgument(SizeX64::dword, nresults); callWrap.addArgument(SizeX64::qword, args); if (nparams == LUA_MULTRET) { RegisterX64 reg = callWrap.suggestNextArgumentRegister(SizeX64::qword); ScopedRegX64 tmp{regs, SizeX64::qword}; // L->top - (ra + 1) build.mov(reg, qword[rState + offsetof(lua_State, top)]); build.lea(tmp.reg, addr[rBase + (ra + 1) * sizeof(TValue)]); build.sub(reg, tmp.reg); build.shr(reg, kTValueSizeLog2); callWrap.addArgument(SizeX64::dword, dwordReg(reg)); } else { callWrap.addArgument(SizeX64::dword, nparams); } callWrap.call(func.release()); inst.regX64 = regs.takeReg(eax, index); // Result of a builtin call is returned in eax break; } case IrCmd::CHECK_FASTCALL_RES: { RegisterX64 res = regOp(inst.a); build.test(res, res); // test here will set SF=1 for a negative number and it always sets OF to 0 build.jcc(ConditionX64::Less, labelOp(inst.b)); // jl jumps if SF != OF break; } case IrCmd::DO_ARITH: if (inst.c.kind == IrOpKind::VmReg) callArithHelper(regs, build, vmRegOp(inst.a), vmRegOp(inst.b), luauRegAddress(vmRegOp(inst.c)), TMS(intOp(inst.d))); else callArithHelper(regs, build, vmRegOp(inst.a), vmRegOp(inst.b), luauConstantAddress(vmConstOp(inst.c)), TMS(intOp(inst.d))); break; case IrCmd::DO_LEN: callLengthHelper(regs, build, vmRegOp(inst.a), vmRegOp(inst.b)); break; case IrCmd::GET_TABLE: if (inst.c.kind == IrOpKind::VmReg) { callGetTable(regs, build, vmRegOp(inst.b), luauRegAddress(vmRegOp(inst.c)), vmRegOp(inst.a)); } else if (inst.c.kind == IrOpKind::Constant) { TValue n; setnvalue(&n, uintOp(inst.c)); callGetTable(regs, build, vmRegOp(inst.b), build.bytes(&n, sizeof(n)), vmRegOp(inst.a)); } else { LUAU_ASSERT(!"Unsupported instruction form"); } break; case IrCmd::SET_TABLE: if (inst.c.kind == IrOpKind::VmReg) { callSetTable(regs, build, vmRegOp(inst.b), luauRegAddress(vmRegOp(inst.c)), vmRegOp(inst.a)); } else if (inst.c.kind == IrOpKind::Constant) { TValue n; setnvalue(&n, uintOp(inst.c)); callSetTable(regs, build, vmRegOp(inst.b), build.bytes(&n, sizeof(n)), vmRegOp(inst.a)); } else { LUAU_ASSERT(!"Unsupported instruction form"); } break; case IrCmd::GET_IMPORT: { ScopedRegX64 tmp1{regs, SizeX64::qword}; build.mov(tmp1.reg, sClosure); IrCallWrapperX64 callWrap(regs, build, index); callWrap.addArgument(SizeX64::qword, rState); callWrap.addArgument(SizeX64::qword, qword[tmp1.release() + offsetof(Closure, env)]); callWrap.addArgument(SizeX64::qword, rConstants); callWrap.addArgument(SizeX64::dword, uintOp(inst.b)); callWrap.addArgument(SizeX64::dword, 0); callWrap.call(qword[rNativeContext + offsetof(NativeContext, luaV_getimport)]); emitUpdateBase(build); ScopedRegX64 tmp2{regs, SizeX64::qword}; // setobj2s(L, ra, L->top - 1) build.mov(tmp2.reg, qword[rState + offsetof(lua_State, top)]); build.sub(tmp2.reg, sizeof(TValue)); ScopedRegX64 tmp3{regs, SizeX64::xmmword}; build.vmovups(tmp3.reg, xmmword[tmp2.reg]); build.vmovups(luauReg(vmRegOp(inst.a)), tmp3.reg); // L->top-- build.mov(qword[rState + offsetof(lua_State, top)], tmp2.reg); break; } case IrCmd::CONCAT: { IrCallWrapperX64 callWrap(regs, build, index); callWrap.addArgument(SizeX64::qword, rState); callWrap.addArgument(SizeX64::dword, int32_t(uintOp(inst.b))); callWrap.addArgument(SizeX64::dword, int32_t(vmRegOp(inst.a) + uintOp(inst.b) - 1)); callWrap.call(qword[rNativeContext + offsetof(NativeContext, luaV_concat)]); emitUpdateBase(build); break; } case IrCmd::GET_UPVALUE: { ScopedRegX64 tmp1{regs, SizeX64::qword}; ScopedRegX64 tmp2{regs, SizeX64::xmmword}; build.mov(tmp1.reg, sClosure); build.add(tmp1.reg, offsetof(Closure, l.uprefs) + sizeof(TValue) * vmUpvalueOp(inst.b)); // uprefs[] is either an actual value, or it points to UpVal object which has a pointer to value Label skip; build.cmp(dword[tmp1.reg + offsetof(TValue, tt)], LUA_TUPVAL); build.jcc(ConditionX64::NotEqual, skip); // UpVal.v points to the value (either on stack, or on heap inside each UpVal, but we can deref it unconditionally) build.mov(tmp1.reg, qword[tmp1.reg + offsetof(TValue, value.gc)]); build.mov(tmp1.reg, qword[tmp1.reg + offsetof(UpVal, v)]); build.setLabel(skip); build.vmovups(tmp2.reg, xmmword[tmp1.reg]); build.vmovups(luauReg(vmRegOp(inst.a)), tmp2.reg); break; } case IrCmd::SET_UPVALUE: { ScopedRegX64 tmp1{regs, SizeX64::qword}; ScopedRegX64 tmp2{regs, SizeX64::qword}; build.mov(tmp1.reg, sClosure); build.mov(tmp2.reg, qword[tmp1.reg + offsetof(Closure, l.uprefs) + sizeof(TValue) * vmUpvalueOp(inst.a) + offsetof(TValue, value.gc)]); build.mov(tmp1.reg, qword[tmp2.reg + offsetof(UpVal, v)]); { ScopedRegX64 tmp3{regs, SizeX64::xmmword}; build.vmovups(tmp3.reg, luauReg(vmRegOp(inst.b))); build.vmovups(xmmword[tmp1.reg], tmp3.reg); } tmp1.free(); callBarrierObject(regs, build, tmp2.release(), {}, vmRegOp(inst.b)); break; } case IrCmd::PREPARE_FORN: callPrepareForN(regs, build, vmRegOp(inst.a), vmRegOp(inst.b), vmRegOp(inst.c)); break; case IrCmd::CHECK_TAG: build.cmp(memRegTagOp(inst.a), tagOp(inst.b)); build.jcc(ConditionX64::NotEqual, labelOp(inst.c)); break; case IrCmd::CHECK_READONLY: build.cmp(byte[regOp(inst.a) + offsetof(Table, readonly)], 0); build.jcc(ConditionX64::NotEqual, labelOp(inst.b)); break; case IrCmd::CHECK_NO_METATABLE: build.cmp(qword[regOp(inst.a) + offsetof(Table, metatable)], 0); build.jcc(ConditionX64::NotEqual, labelOp(inst.b)); break; case IrCmd::CHECK_SAFE_ENV: { ScopedRegX64 tmp{regs, SizeX64::qword}; build.mov(tmp.reg, sClosure); build.mov(tmp.reg, qword[tmp.reg + offsetof(Closure, env)]); build.cmp(byte[tmp.reg + offsetof(Table, safeenv)], 0); build.jcc(ConditionX64::Equal, labelOp(inst.a)); break; } case IrCmd::CHECK_ARRAY_SIZE: if (inst.b.kind == IrOpKind::Inst) build.cmp(dword[regOp(inst.a) + offsetof(Table, sizearray)], regOp(inst.b)); else if (inst.b.kind == IrOpKind::Constant) build.cmp(dword[regOp(inst.a) + offsetof(Table, sizearray)], intOp(inst.b)); else LUAU_ASSERT(!"Unsupported instruction form"); build.jcc(ConditionX64::BelowEqual, labelOp(inst.c)); break; case IrCmd::CHECK_SLOT_MATCH: { ScopedRegX64 tmp{regs, SizeX64::qword}; jumpIfNodeKeyNotInExpectedSlot(build, tmp.reg, regOp(inst.a), luauConstantValue(vmConstOp(inst.b)), labelOp(inst.c)); break; } case IrCmd::CHECK_NODE_NO_NEXT: { ScopedRegX64 tmp{regs, SizeX64::dword}; build.mov(tmp.reg, dword[regOp(inst.a) + offsetof(LuaNode, key) + kOffsetOfTKeyNext]); build.shr(tmp.reg, kNextBitOffset); build.jcc(ConditionX64::NotZero, labelOp(inst.b)); break; } case IrCmd::INTERRUPT: emitInterrupt(regs, build, uintOp(inst.a)); break; case IrCmd::CHECK_GC: callStepGc(regs, build); break; case IrCmd::BARRIER_OBJ: callBarrierObject(regs, build, regOp(inst.a), inst.a, vmRegOp(inst.b)); break; case IrCmd::BARRIER_TABLE_BACK: callBarrierTableFast(regs, build, regOp(inst.a), inst.a); break; case IrCmd::BARRIER_TABLE_FORWARD: { Label skip; ScopedRegX64 tmp{regs, SizeX64::qword}; checkObjectBarrierConditions(build, tmp.reg, regOp(inst.a), vmRegOp(inst.b), skip); { ScopedSpills spillGuard(regs); IrCallWrapperX64 callWrap(regs, build, index); callWrap.addArgument(SizeX64::qword, rState); callWrap.addArgument(SizeX64::qword, regOp(inst.a), inst.a); callWrap.addArgument(SizeX64::qword, tmp); callWrap.call(qword[rNativeContext + offsetof(NativeContext, luaC_barriertable)]); } build.setLabel(skip); break; } case IrCmd::SET_SAVEDPC: { // This is like emitSetSavedPc, but using register allocation instead of relying on rax/rdx ScopedRegX64 tmp1{regs, SizeX64::qword}; ScopedRegX64 tmp2{regs, SizeX64::qword}; build.mov(tmp2.reg, sCode); build.add(tmp2.reg, uintOp(inst.a) * sizeof(Instruction)); build.mov(tmp1.reg, qword[rState + offsetof(lua_State, ci)]); build.mov(qword[tmp1.reg + offsetof(CallInfo, savedpc)], tmp2.reg); break; } case IrCmd::CLOSE_UPVALS: { Label next; ScopedRegX64 tmp1{regs, SizeX64::qword}; ScopedRegX64 tmp2{regs, SizeX64::qword}; // L->openupval != 0 build.mov(tmp1.reg, qword[rState + offsetof(lua_State, openupval)]); build.test(tmp1.reg, tmp1.reg); build.jcc(ConditionX64::Zero, next); // ra <= L->openuval->v build.lea(tmp2.reg, addr[rBase + vmRegOp(inst.a) * sizeof(TValue)]); build.cmp(tmp2.reg, qword[tmp1.reg + offsetof(UpVal, v)]); build.jcc(ConditionX64::Above, next); tmp1.free(); { ScopedSpills spillGuard(regs); IrCallWrapperX64 callWrap(regs, build, index); callWrap.addArgument(SizeX64::qword, rState); callWrap.addArgument(SizeX64::qword, tmp2); callWrap.call(qword[rNativeContext + offsetof(NativeContext, luaF_close)]); } build.setLabel(next); break; } case IrCmd::CAPTURE: // No-op right now break; // Fallbacks to non-IR instruction implementations case IrCmd::SETLIST: regs.assertAllFree(); emitInstSetList(regs, build, vmRegOp(inst.b), vmRegOp(inst.c), intOp(inst.d), uintOp(inst.e)); break; case IrCmd::CALL: regs.assertAllFree(); regs.assertNoSpills(); emitInstCall(build, helpers, vmRegOp(inst.a), intOp(inst.b), intOp(inst.c)); break; case IrCmd::RETURN: regs.assertAllFree(); regs.assertNoSpills(); emitInstReturn(build, helpers, vmRegOp(inst.a), intOp(inst.b)); break; case IrCmd::FORGLOOP: regs.assertAllFree(); emitInstForGLoop(build, vmRegOp(inst.a), intOp(inst.b), labelOp(inst.c)); jumpOrFallthrough(blockOp(inst.d), next); break; case IrCmd::FORGLOOP_FALLBACK: { IrCallWrapperX64 callWrap(regs, build, index); callWrap.addArgument(SizeX64::qword, rState); callWrap.addArgument(SizeX64::dword, vmRegOp(inst.a)); callWrap.addArgument(SizeX64::dword, intOp(inst.b)); callWrap.call(qword[rNativeContext + offsetof(NativeContext, forgLoopNonTableFallback)]); emitUpdateBase(build); build.test(al, al); build.jcc(ConditionX64::NotZero, labelOp(inst.c)); jumpOrFallthrough(blockOp(inst.d), next); break; } case IrCmd::FORGPREP_XNEXT_FALLBACK: { IrCallWrapperX64 callWrap(regs, build, index); callWrap.addArgument(SizeX64::qword, rState); callWrap.addArgument(SizeX64::qword, luauRegAddress(vmRegOp(inst.b))); callWrap.addArgument(SizeX64::dword, uintOp(inst.a) + 1); callWrap.call(qword[rNativeContext + offsetof(NativeContext, forgPrepXnextFallback)]); jumpOrFallthrough(blockOp(inst.c), next); break; } case IrCmd::COVERAGE: { ScopedRegX64 tmp1{regs, SizeX64::qword}; ScopedRegX64 tmp2{regs, SizeX64::dword}; ScopedRegX64 tmp3{regs, SizeX64::dword}; build.mov(tmp1.reg, sCode); build.add(tmp1.reg, uintOp(inst.a) * sizeof(Instruction)); // hits = LUAU_INSN_E(*pc) build.mov(tmp2.reg, dword[tmp1.reg]); build.sar(tmp2.reg, 8); // hits = (hits < (1 << 23) - 1) ? hits + 1 : hits; build.xor_(tmp3.reg, tmp3.reg); build.cmp(tmp2.reg, (1 << 23) - 1); build.setcc(ConditionX64::NotEqual, byteReg(tmp3.reg)); build.add(tmp2.reg, tmp3.reg); // VM_PATCH_E(pc, hits); build.sal(tmp2.reg, 8); build.movzx(tmp3.reg, byte[tmp1.reg]); build.or_(tmp3.reg, tmp2.reg); build.mov(dword[tmp1.reg], tmp3.reg); break; } // Full instruction fallbacks case IrCmd::FALLBACK_GETGLOBAL: LUAU_ASSERT(inst.b.kind == IrOpKind::VmReg); LUAU_ASSERT(inst.c.kind == IrOpKind::VmConst); emitFallback(regs, build, data, LOP_GETGLOBAL, uintOp(inst.a)); break; case IrCmd::FALLBACK_SETGLOBAL: LUAU_ASSERT(inst.b.kind == IrOpKind::VmReg); LUAU_ASSERT(inst.c.kind == IrOpKind::VmConst); emitFallback(regs, build, data, LOP_SETGLOBAL, uintOp(inst.a)); break; case IrCmd::FALLBACK_GETTABLEKS: LUAU_ASSERT(inst.b.kind == IrOpKind::VmReg); LUAU_ASSERT(inst.c.kind == IrOpKind::VmReg); LUAU_ASSERT(inst.d.kind == IrOpKind::VmConst); emitFallback(regs, build, data, LOP_GETTABLEKS, uintOp(inst.a)); break; case IrCmd::FALLBACK_SETTABLEKS: LUAU_ASSERT(inst.b.kind == IrOpKind::VmReg); LUAU_ASSERT(inst.c.kind == IrOpKind::VmReg); LUAU_ASSERT(inst.d.kind == IrOpKind::VmConst); emitFallback(regs, build, data, LOP_SETTABLEKS, uintOp(inst.a)); break; case IrCmd::FALLBACK_NAMECALL: LUAU_ASSERT(inst.b.kind == IrOpKind::VmReg); LUAU_ASSERT(inst.c.kind == IrOpKind::VmReg); LUAU_ASSERT(inst.d.kind == IrOpKind::VmConst); emitFallback(regs, build, data, LOP_NAMECALL, uintOp(inst.a)); break; case IrCmd::FALLBACK_PREPVARARGS: LUAU_ASSERT(inst.b.kind == IrOpKind::Constant); emitFallback(regs, build, data, LOP_PREPVARARGS, uintOp(inst.a)); break; case IrCmd::FALLBACK_GETVARARGS: LUAU_ASSERT(inst.b.kind == IrOpKind::VmReg); LUAU_ASSERT(inst.c.kind == IrOpKind::Constant); emitFallback(regs, build, data, LOP_GETVARARGS, uintOp(inst.a)); break; case IrCmd::FALLBACK_NEWCLOSURE: LUAU_ASSERT(inst.b.kind == IrOpKind::VmReg); LUAU_ASSERT(inst.c.kind == IrOpKind::Constant); emitFallback(regs, build, data, LOP_NEWCLOSURE, uintOp(inst.a)); break; case IrCmd::FALLBACK_DUPCLOSURE: LUAU_ASSERT(inst.b.kind == IrOpKind::VmReg); LUAU_ASSERT(inst.c.kind == IrOpKind::VmConst); emitFallback(regs, build, data, LOP_DUPCLOSURE, uintOp(inst.a)); break; case IrCmd::FALLBACK_FORGPREP: emitFallback(regs, build, data, LOP_FORGPREP, uintOp(inst.a)); jumpOrFallthrough(blockOp(inst.c), next); break; case IrCmd::BITAND_UINT: inst.regX64 = regs.allocRegOrReuse(SizeX64::dword, index, {inst.a}); if (inst.regX64 != regOp(inst.a)) build.mov(inst.regX64, regOp(inst.a)); build.and_(inst.regX64, memRegUintOp(inst.b)); break; case IrCmd::BITXOR_UINT: inst.regX64 = regs.allocRegOrReuse(SizeX64::dword, index, {inst.a}); if (inst.regX64 != regOp(inst.a)) build.mov(inst.regX64, regOp(inst.a)); build.xor_(inst.regX64, memRegUintOp(inst.b)); break; case IrCmd::BITOR_UINT: inst.regX64 = regs.allocRegOrReuse(SizeX64::dword, index, {inst.a}); if (inst.regX64 != regOp(inst.a)) build.mov(inst.regX64, regOp(inst.a)); build.or_(inst.regX64, memRegUintOp(inst.b)); break; case IrCmd::BITNOT_UINT: inst.regX64 = regs.allocRegOrReuse(SizeX64::dword, index, {inst.a}); if (inst.regX64 != regOp(inst.a)) build.mov(inst.regX64, regOp(inst.a)); build.not_(inst.regX64); break; case IrCmd::BITLSHIFT_UINT: { // Custom bit shift value can only be placed in cl ScopedRegX64 shiftTmp{regs, regs.takeReg(ecx, kInvalidInstIdx)}; inst.regX64 = regs.allocReg(SizeX64::dword, index); build.mov(shiftTmp.reg, memRegUintOp(inst.b)); if (inst.a.kind == IrOpKind::Constant) build.mov(inst.regX64, uintOp(inst.a)); else if (inst.regX64 != regOp(inst.a)) build.mov(inst.regX64, regOp(inst.a)); build.shl(inst.regX64, byteReg(shiftTmp.reg)); break; } case IrCmd::BITRSHIFT_UINT: { // Custom bit shift value can only be placed in cl ScopedRegX64 shiftTmp{regs, regs.takeReg(ecx, kInvalidInstIdx)}; inst.regX64 = regs.allocReg(SizeX64::dword, index); build.mov(shiftTmp.reg, memRegUintOp(inst.b)); if (inst.a.kind == IrOpKind::Constant) build.mov(inst.regX64, uintOp(inst.a)); else if (inst.regX64 != regOp(inst.a)) build.mov(inst.regX64, regOp(inst.a)); build.shr(inst.regX64, byteReg(shiftTmp.reg)); break; } case IrCmd::BITARSHIFT_UINT: { // Custom bit shift value can only be placed in cl ScopedRegX64 shiftTmp{regs, regs.takeReg(ecx, kInvalidInstIdx)}; inst.regX64 = regs.allocReg(SizeX64::dword, index); build.mov(shiftTmp.reg, memRegUintOp(inst.b)); if (inst.a.kind == IrOpKind::Constant) build.mov(inst.regX64, uintOp(inst.a)); else if (inst.regX64 != regOp(inst.a)) build.mov(inst.regX64, regOp(inst.a)); build.sar(inst.regX64, byteReg(shiftTmp.reg)); break; } case IrCmd::BITLROTATE_UINT: { // Custom bit shift value can only be placed in cl ScopedRegX64 shiftTmp{regs, regs.takeReg(ecx, kInvalidInstIdx)}; inst.regX64 = regs.allocReg(SizeX64::dword, index); build.mov(shiftTmp.reg, memRegUintOp(inst.b)); if (inst.a.kind == IrOpKind::Constant) build.mov(inst.regX64, uintOp(inst.a)); else if (inst.regX64 != regOp(inst.a)) build.mov(inst.regX64, regOp(inst.a)); build.rol(inst.regX64, byteReg(shiftTmp.reg)); break; } case IrCmd::BITRROTATE_UINT: { // Custom bit shift value can only be placed in cl ScopedRegX64 shiftTmp{regs, regs.takeReg(ecx, kInvalidInstIdx)}; inst.regX64 = regs.allocReg(SizeX64::dword, index); build.mov(shiftTmp.reg, memRegUintOp(inst.b)); if (inst.a.kind == IrOpKind::Constant) build.mov(inst.regX64, uintOp(inst.a)); else if (inst.regX64 != regOp(inst.a)) build.mov(inst.regX64, regOp(inst.a)); build.ror(inst.regX64, byteReg(shiftTmp.reg)); break; } case IrCmd::BITCOUNTLZ_UINT: { inst.regX64 = regs.allocRegOrReuse(SizeX64::dword, index, {inst.a}); Label zero, exit; build.test(regOp(inst.a), regOp(inst.a)); build.jcc(ConditionX64::Equal, zero); build.bsr(inst.regX64, regOp(inst.a)); build.xor_(inst.regX64, 0x1f); build.jmp(exit); build.setLabel(zero); build.mov(inst.regX64, 32); build.setLabel(exit); break; } case IrCmd::BITCOUNTRZ_UINT: { inst.regX64 = regs.allocRegOrReuse(SizeX64::dword, index, {inst.a}); Label zero, exit; build.test(regOp(inst.a), regOp(inst.a)); build.jcc(ConditionX64::Equal, zero); build.bsf(inst.regX64, regOp(inst.a)); build.jmp(exit); build.setLabel(zero); build.mov(inst.regX64, 32); build.setLabel(exit); break; } case IrCmd::INVOKE_LIBM: { LuauBuiltinFunction bfid = LuauBuiltinFunction(uintOp(inst.a)); IrCallWrapperX64 callWrap(regs, build, index); callWrap.addArgument(SizeX64::xmmword, memRegDoubleOp(inst.b), inst.b); if (inst.c.kind != IrOpKind::None) callWrap.addArgument(SizeX64::xmmword, memRegDoubleOp(inst.c), inst.c); callWrap.call(qword[rNativeContext + getNativeContextOffset(bfid)]); inst.regX64 = regs.takeReg(xmm0, index); break; } // Pseudo instructions case IrCmd::NOP: case IrCmd::SUBSTITUTE: LUAU_ASSERT(!"Pseudo instructions should not be lowered"); break; } valueTracker.afterInstLowering(inst, index); regs.freeLastUseRegs(inst, index); } void IrLoweringX64::finishBlock() { regs.assertNoSpills(); } bool IrLoweringX64::hasError() const { // If register allocator had to use more stack slots than we have available, this function can't run natively if (regs.maxUsedSlot > kSpillSlots) return true; return false; } bool IrLoweringX64::isFallthroughBlock(IrBlock target, IrBlock next) { return target.start == next.start; } void IrLoweringX64::jumpOrFallthrough(IrBlock& target, IrBlock& next) { if (!isFallthroughBlock(target, next)) build.jmp(target.label); } OperandX64 IrLoweringX64::memRegDoubleOp(IrOp op) { switch (op.kind) { case IrOpKind::Inst: return regOp(op); case IrOpKind::Constant: return build.f64(doubleOp(op)); case IrOpKind::VmReg: return luauRegValue(vmRegOp(op)); case IrOpKind::VmConst: return luauConstantValue(vmConstOp(op)); default: LUAU_ASSERT(!"Unsupported operand kind"); } return noreg; } OperandX64 IrLoweringX64::memRegUintOp(IrOp op) { switch (op.kind) { case IrOpKind::Inst: return regOp(op); case IrOpKind::Constant: return OperandX64(uintOp(op)); default: LUAU_ASSERT(!"Unsupported operand kind"); } return noreg; } OperandX64 IrLoweringX64::memRegTagOp(IrOp op) { switch (op.kind) { case IrOpKind::Inst: return regOp(op); case IrOpKind::VmReg: return luauRegTag(vmRegOp(op)); case IrOpKind::VmConst: return luauConstantTag(vmConstOp(op)); default: LUAU_ASSERT(!"Unsupported operand kind"); } return noreg; } RegisterX64 IrLoweringX64::regOp(IrOp op) { IrInst& inst = function.instOp(op); if (inst.spilled || inst.needsReload) regs.restore(inst, false); LUAU_ASSERT(inst.regX64 != noreg); return inst.regX64; } IrConst IrLoweringX64::constOp(IrOp op) const { return function.constOp(op); } uint8_t IrLoweringX64::tagOp(IrOp op) const { return function.tagOp(op); } bool IrLoweringX64::boolOp(IrOp op) const { return function.boolOp(op); } int IrLoweringX64::intOp(IrOp op) const { return function.intOp(op); } unsigned IrLoweringX64::uintOp(IrOp op) const { return function.uintOp(op); } double IrLoweringX64::doubleOp(IrOp op) const { return function.doubleOp(op); } IrBlock& IrLoweringX64::blockOp(IrOp op) const { return function.blockOp(op); } Label& IrLoweringX64::labelOp(IrOp op) const { return blockOp(op).label; } } // namespace X64 } // namespace CodeGen } // namespace Luau