
Towards an Unsound But Complete Type System
Work In Progress on New Non-Strict Mode for Luau

Lily Brown
Andy Friesen
Alan Jeffrey

Vighnesh Vijay
Roblox

San Mateo, CA, USA

Abstract
In HATRA 2021, we presented The Goals Of The Luau Type
System, describing the human factors of a type system for a
language with a heterogeneous developer community. One
of the goals was the design of type system for bug detection,
where we have high confidence that type errors isolate gen-
uine software defects, and that false positives are minimized.
Such a type system is, by necessity, unsound, but we can
ask instead that it is complete. This paper presents a work-
in-progress report on the design and implementation of the
new non-strict mode for Luau.

ACM Reference Format:
Lily Brown, Andy Friesen, Alan Jeffrey, and Vighnesh Vijay. 2024.
Towards an Unsound But Complete Type System: Work In Progress
on New Non-Strict Mode for Luau. In Incorrectness ’24: Formal
Methods for Incorrectness. ACM, New York, NY, USA, 4 pages.

1 Introduction
Luau [11] is the scripting language used by the Roblox [12]
platform for shared immersive experiences. Luau extends the
Lua [9] language, notably by providing type-driven tooling
such as autocomplete and API documentation (as well as
traditional type error reporting). Roblox has hundreds of
millions of users, and millions of creators, ranging from
children learning to program for the first time to professional
development studios.
In HATRA 2021, we presented a position paper on the

Goals Of The Luau Type System [1], describing the human fac-
tors issues with designing a type system for a languagewith a
heterogeneous developer community. The design flows from
the needs of the different communities: beginners are fo-
cused on immediate goals (“the stairs should light up when a
player walks on them”) and less on the code quality concerns
of more experienced developers; for all users type-driven
tooling is important for productivity. These needs result in a
design with two modes:

This work is licensed under a Creative Commons
Attribution 4.0 International License.

Incorrectness ’24, January 2024, London, UK
© 2024 Roblox.

• non-strict mode, aimed at non-professionals, focused
on minimizing false positives (that is, in non-strict
mode, any program with a type error has a defect),
and

• strict mode, aimed at professionals, focused on min-
imizing false negatives (that is, in strict mode, any
program with a defect has a type error).

The focus of this extended abstract is the design of non-strict
mode: what constitutes a defect, and how can we design a
complete type system for detecting them. (Thewords “sound”
and “complete” in this sense are far from ideal, but “sound
type system” has a well-established meaning, and “complete”
is well-established as the dual of “sound”, so here we are.)
The closest work to ours is success typing [8], used in

Erlang Dialyzer [7]. The new feature of our work is that
strict and non-strict mode have to interact, whereas Dialyzer
only has the equivalent of non-strict mode.
New non-strict mode is specified in a Luau Request For

Comment [5], and is currently being implemented.We expect
it (and other new type checking features) to be available
in 2024. This extended abstract is based on the RFC, but
written in “Greek letters and horizontal lines” rather than
“monospaced text” for mat.

2 Code defects
The main goal of non-strict mode is to identify defects, but
this requires identifying what constitutes a defect,. Run-time
errors are an obvious defect:

local hi = "hi"
print(math.abs(hi))

but we also want to catch common mistakes such as mis-
spelling a property name, even though Luau returns nil for
missing property accesses. For this reason, we consider a
larger class of defects:

• run-time errors,
• expressions guaranteed to be nil, and
• writing to a table property that is never read.



Incorrectness ’24, January 2024, London, UK Lily Brown, Andy Friesen, Alan Jeffrey, and Vighnesh Vijay

2.1 Run-time errors
Run-time errors occur due to run-time type mismatches
(such as 5("hi")) or built-in function (such as math.abs("hi")).
Detecting run-time errors is undecidable, for example:

if cond() then
math.abs(“hi”)

end

In general, we cannot be sure that this code produces a run-
time error, but we do know that if math.abs("hi") is exe-
cuted, it will produce an error, so we consider this to be a
defect.

2.2 Expressions guaranteed to be nil
Luau tables do not error when a missing property is accessed
(though embeddings may). So

local t = { Foo = 5 }
local x = t.Fop

won’t produce a run-time error, but is more likely than not a
programmer error. In this case, if the programmer intent was
to initialize x as nil, they could have initialized x = nil. For
this reason, we consider it a code defect to use an expression
that the type system infers is of type nil, other than the nil
constant itself.

2.3 Writing properties that are never read
There is a matching problem with misspelling properties
when writing. For example

function f()
local t = {}
t.Foo = 5
t.Fop = 7
print(t.Foo)

end

won’t produce a run-time error, but is more likely than not
a programmer error, since t.Fop is written but never read.
We can use read-only and write-only table properties types
for this, and make it an error to create a write-only property.
We have to be careful about this though, because if f

ended with return t, then it would be a perfectly sensible
function with type () -> { Foo: number, Fop: number }.
The only way to detect that Fop was never read would be
whole-program analysis, which is prohibitively expensive.

3 New Non-strict error reporting
The difficult part of non-strict mode error-reporting is de-
tecting guaranteed run-time errors. We do this using an
error-reporting pass that generates a type context such that
if any of the 𝑥 : 𝑇 in the type context are satisfied, then the
program is guaranteed to produce a type error.

For example in the program
function h(x, y)
math.abs(x)

string.lower(y)
end

an error is reportedwhen x isn’t a number, or y isn’t a string,
so the generated context is

x : ~number
y : ~string

(~T is Luau’s concrete syntax for type negation.) In the func-
tion:

function f(x)
math.abs(x)
string.lower(x)

end

an error is reported when x isn’t a number or isn’t a string,
so the constraint set is

x : ~number | ~string

(T|U is Luau’s concrete syntax for type negation.) Since
~number | ~string is equivalent to the type unknown (which
contains every value), non-strict mode can report a warning,
since calling the function is guaranteed to throw a run-time
error. In contrast:

function g(x)
if cond() then

math.abs(x)
else

string.lower(x)
end

end

generates context
x : ~number & ~string

(T&U is Luau’s concrete syntax for type intersection.) Since
~number & ~string is not equivalent to unknown, non-strict
mode reports no warning.
In Figure 1 we provide some of the inference rules for

conbtext generation, and the warnings that context gener-
ation produces. These are run after type inference, so they
can assume that all code is fully typed.

These rules generalize type intersection and union to type
contexts, write ∅ for the everywhere-never context, andwrite
𝑥 : 𝑇 for the context that is everywhere never except for 𝑥
where it maps to 𝑇 .

Conjecture 3.1. If Γ ⊢ 𝑀 : 𝑇 ⊣ Δ, 𝑥 : 𝑈 and 𝜎 is a closing
substitution where 𝜎 (𝑥) : 𝑈 and𝑀 [𝜎] →∗ 𝑣 , then 𝑣 : 𝑇 .

Corollary 3.2. If Γ ⊢ 𝑀 : never ⊣ Δ, 𝑥 : unknown and 𝜎 is a
closing substitution, then𝑀 [𝜎] does not terminate successfully.

4 Checked functions
The crucial aspect of this type system is that we have a
type error inhabited by no values, and by expressions which
may throw a run-time exception. (This is essentially a very
simple type and effect system [10] with one effect.) The rule



Towards an Unsound But Complete Type System Incorrectness ’24, January 2024, London, UK

Γ ⊢ 𝑀 : never ⊣ Δ1
Γ, 𝑥 : 𝑇 ⊢ 𝐵 ⊣ Δ2, 𝑥 : 𝑈
(warn if unknown <: 𝑈 )

Γ ⊢ (local𝑥 : 𝑇 = 𝑀 ;𝐵) ⊣ (Δ1 ∪ Δ2)

Γ ⊢ 𝑀 : never ⊣ Δ1
Γ ⊢ 𝐵 ⊣ Δ2
Γ ⊢ 𝐶 ⊣ Δ3

Γ ⊢ (if𝑀 then 𝐵 else𝐶 end) ⊣ (Δ1 ∪ (Δ2 ∩ Δ3))

Γ ⊢ 𝑥 : 𝑇 ⊣ (𝑥 : 𝑇 )
(warn if 𝑘 : 𝑇 )
Γ ⊢ 𝑘 : 𝑇 ⊣ ∅

Γ, 𝑥 : 𝑆 ⊢ 𝐵 ⊣ Δ, 𝑥 : 𝑈
(warn if unknown <: 𝑈 )
(warn if function <: 𝑇 )

Γ ⊢ (function(𝑥 : 𝑆)𝐵 end) : 𝑇 ⊣ Δ

Γ ⊢ 𝑀 : (𝑆 → error)
Γ ⊢ 𝑀 : ¬function ⊣ Δ1
Γ ⊢ 𝑁 : 𝑆 ⊣ Δ2
(warn if Γ ⊢ 𝑀 : (unknown→ (𝑇 ∪ error)))

Γ ⊢ 𝑀 (𝑁 ) : 𝑇 ⊣ Δ1 ∪ Δ2

Figure 1. Type context generation for blocks (Γ ⊢ 𝐵 ⊣ Δ) and expressions (Γ ⊢ 𝑀 : 𝑇 ⊣ Δ)

Γ ⊢ math.abs : (¬number→ error)

Γ ⊢ math.abs : ¬function ⊣ ∅

Γ ⊢ string.lower : (¬string→ error)
Γ ⊢ string.lower : ¬function ⊣ ∅
Γ ⊢ 𝑥 : ¬string ⊣ (𝑥 : ¬string)
(warn since Γ ⊢ string.lower : unknown→ (¬number ∪ error))

Γ ⊢ string.lower(𝑥) : ¬number ⊣ (𝑥 : ¬string)
Γ ⊢ (math.abs(string.lower(𝑥)) : never ⊣ (𝑥 : ¬string)

Figure 2. Example warning

for function application𝑀 (𝑁 ) has two dependencies on the
type for𝑀 :

Γ ⊢ 𝑀 : (𝑆 → error)
Γ ⊢ 𝑀 : (unknown→ (𝑇 ∪ error))

Since Luau is based on semantic subtyping [4, 6] and supports
intersection types, this is equivalent to asking for 𝑀 to be
an overloaded function, where one overload has argument
type unknown one one has result type error. For example:

math.abs : (number→ number) ∩ (¬number→ error)
and so (by subsumption):

math.abs : (¬number→ error)
math.abs : (unknown→ (number ∪ error))

This is a common enough idiom it is worth naming it: we
call any function of type

(𝑆 →𝑇 ) ∩ (¬𝑆 → error)
a checked function, since it performs a run-time check on its
argument. Checked functions are called strong functions in
Elixir [3].

Note that this formulation does not change the subtyping
rule for functions: they are still contravariant in their argu-
ment type, and covariant in their result type. This contrasts
with checked functions, which are invariant in their argu-
ment type (since one overload 𝑆 →𝑇 is contravariant in 𝑆 ,
and the other ¬𝑆 → error is covariant).
This formulation is also different from functions in suc-

cess typings [8], which in our system is (¬𝑆 → error) ∩
(unknown→ (𝑇 ∪ error)), and is covariant in 𝑆 .

5 Future work
This type system is still in the design phase [5], though we
hope the implementation will be ready in by the end of 2023.
This will include testing the implementation on our unit
tests, and on large code bases.

There is an Agda development of a core of strict mode [2].
It should extend to non-strict mode, at which point Conjec-
ture 3.1 (or something like it) will be mechanically verified.

References
[1] L. Brown, A. Friesen, and A. S. A. Jeffrey. 2021. Position Paper: Goals of

the Luau Type System. In Proc. Human Aspects of Types and Reasoning
Assistants. https://asaj.org/papers/hatra21.pdf

[2] L. Brown and A. S. A. Jeffrey. 2023. Luau Prototype Typechecker.
https://github.com/luau-lang/agda-typeck

[3] Giuseppe Castagna, Guillaume Duboc, and José Valim. 2023. The
Design Principles of the Elixir Type System. https://doi.org/10.48550/
arXiv.2306.06391.

[4] G. Castagna and A. Frisch. 2005. A Gentle Introduction to Semantic
Subtyping. In Proc. Principles and Practice of Declarative Programming.

[5] Alan Jeffrey. 2023. RFC For Newv Non-strict Mode. Luau Request For
Comment. https://github.com/Roblox/luau/pull/1037.

[6] A. S. A. Jeffrey. 2022. Semantic Subtyping in Luau. Roblox Technical
Blog. https://blog.roblox.com/2022/11/semantic-subtyping-luau/

[7] Tobias Lindahl and Konstantinos Sagonas. 2004. Detecting Software
Defects in Telecom Applications Through Lightweight Static Analysis:
AWar Story. In Proc. Asian Symp. Programming Languages and Systems.
91–106.

[8] Tobias Lindahl and Konstantinos Sagonas. 2006. Practical Type In-
ference Based on Success Typings. In Proc. Int. Conf. Principles and
Practice of Declarative Programming. 167–178.

[9] Lua.org and PUC-Rio. 2023. The Lua Programming Language. https:
//lua.org

https://asaj.org/papers/hatra21.pdf
https://github.com/luau-lang/agda-typeck
https://doi.org/10.48550/arXiv.2306.06391
https://doi.org/10.48550/arXiv.2306.06391
https://github.com/Roblox/luau/pull/1037
https://blog.roblox.com/2022/11/semantic-subtyping-luau/
https://lua.org
https://lua.org


Incorrectness ’24, January 2024, London, UK Lily Brown, Andy Friesen, Alan Jeffrey, and Vighnesh Vijay

[10] Flemming Nielson and Hanne Riis Nielson. 1999. Type and Effect
Systems. Springer, 114–136.

[11] Roblox. 2023. The Luau Programming Language. https://luau-lang.org

[12] Roblox. 2023. Reimagining the way people come together. https:
//corp.roblox.com

https://luau-lang.org
https://corp.roblox.com
https://corp.roblox.com

	Abstract
	1 Introduction
	2 Code defects
	2.1 Run-time errors
	2.2 Expressions guaranteed to be nil
	2.3 Writing properties that are never read

	3 New Non-strict error reporting
	4 Checked functions
	5 Future work
	References

