// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details #include "Luau/TypeChecker2.h" #include "Luau/Ast.h" #include "Luau/AstQuery.h" #include "Luau/Clone.h" #include "Luau/Common.h" #include "Luau/DcrLogger.h" #include "Luau/Error.h" #include "Luau/InsertionOrderedMap.h" #include "Luau/Instantiation.h" #include "Luau/Metamethods.h" #include "Luau/Normalize.h" #include "Luau/ToString.h" #include "Luau/TxnLog.h" #include "Luau/Type.h" #include "Luau/TypePack.h" #include "Luau/TypeUtils.h" #include "Luau/Unifier.h" #include "Luau/TypeFamily.h" #include "Luau/VisitType.h" #include LUAU_FASTFLAG(DebugLuauMagicTypes) namespace Luau { // TypeInfer.h // TODO move these using PrintLineProc = void (*)(const std::string&); extern PrintLineProc luauPrintLine; /* Push a scope onto the end of a stack for the lifetime of the StackPusher instance. * TypeChecker2 uses this to maintain knowledge about which scope encloses every * given AstNode. */ struct StackPusher { std::vector>* stack; NotNull scope; explicit StackPusher(std::vector>& stack, Scope* scope) : stack(&stack) , scope(scope) { stack.push_back(NotNull{scope}); } ~StackPusher() { if (stack) { LUAU_ASSERT(stack->back() == scope); stack->pop_back(); } } StackPusher(const StackPusher&) = delete; StackPusher&& operator=(const StackPusher&) = delete; StackPusher(StackPusher&& other) : stack(std::exchange(other.stack, nullptr)) , scope(other.scope) { } }; static std::optional getIdentifierOfBaseVar(AstExpr* node) { if (AstExprGlobal* expr = node->as()) return expr->name.value; if (AstExprLocal* expr = node->as()) return expr->local->name.value; if (AstExprIndexExpr* expr = node->as()) return getIdentifierOfBaseVar(expr->expr); if (AstExprIndexName* expr = node->as()) return getIdentifierOfBaseVar(expr->expr); return std::nullopt; } template bool areEquivalent(const T& a, const T& b) { if (a.family != b.family) return false; if (a.typeArguments.size() != b.typeArguments.size() || a.packArguments.size() != b.packArguments.size()) return false; for (size_t i = 0; i < a.typeArguments.size(); ++i) { if (follow(a.typeArguments[i]) != follow(b.typeArguments[i])) return false; } for (size_t i = 0; i < a.packArguments.size(); ++i) { if (follow(a.packArguments[i]) != follow(b.packArguments[i])) return false; } return true; } struct FamilyFinder : TypeOnceVisitor { DenseHashSet mentionedFamilies{nullptr}; DenseHashSet mentionedFamilyPacks{nullptr}; bool visit(TypeId ty, const TypeFamilyInstanceType&) override { mentionedFamilies.insert(ty); return true; } bool visit(TypePackId tp, const TypeFamilyInstanceTypePack&) override { mentionedFamilyPacks.insert(tp); return true; } }; struct InternalFamilyFinder : TypeOnceVisitor { DenseHashSet internalFamilies{nullptr}; DenseHashSet internalPackFamilies{nullptr}; DenseHashSet mentionedFamilies{nullptr}; DenseHashSet mentionedFamilyPacks{nullptr}; InternalFamilyFinder(std::vector& declStack) { FamilyFinder f; for (TypeId fn : declStack) f.traverse(fn); mentionedFamilies = std::move(f.mentionedFamilies); mentionedFamilyPacks = std::move(f.mentionedFamilyPacks); } bool visit(TypeId ty, const TypeFamilyInstanceType& tfit) override { bool hasGeneric = false; for (TypeId p : tfit.typeArguments) { if (get(follow(p))) { hasGeneric = true; break; } } for (TypePackId p : tfit.packArguments) { if (get(follow(p))) { hasGeneric = true; break; } } if (hasGeneric) { for (TypeId mentioned : mentionedFamilies) { const TypeFamilyInstanceType* mentionedTfit = get(mentioned); LUAU_ASSERT(mentionedTfit); if (areEquivalent(tfit, *mentionedTfit)) { return true; } } internalFamilies.insert(ty); } return true; } bool visit(TypePackId tp, const TypeFamilyInstanceTypePack& tfitp) override { bool hasGeneric = false; for (TypeId p : tfitp.typeArguments) { if (get(follow(p))) { hasGeneric = true; break; } } for (TypePackId p : tfitp.packArguments) { if (get(follow(p))) { hasGeneric = true; break; } } if (hasGeneric) { for (TypePackId mentioned : mentionedFamilyPacks) { const TypeFamilyInstanceTypePack* mentionedTfitp = get(mentioned); LUAU_ASSERT(mentionedTfitp); if (areEquivalent(tfitp, *mentionedTfitp)) { return true; } } internalPackFamilies.insert(tp); } return true; } }; struct TypeChecker2 { NotNull builtinTypes; DcrLogger* logger; NotNull ice; const SourceModule* sourceModule; Module* module; TypeArena testArena; std::vector> stack; std::vector functionDeclStack; DenseHashSet noTypeFamilyErrors{nullptr}; Normalizer normalizer; TypeChecker2(NotNull builtinTypes, NotNull unifierState, DcrLogger* logger, const SourceModule* sourceModule, Module* module) : builtinTypes(builtinTypes) , logger(logger) , ice(unifierState->iceHandler) , sourceModule(sourceModule) , module(module) , normalizer{&testArena, builtinTypes, unifierState, /* cacheInhabitance */ true} { } std::optional pushStack(AstNode* node) { if (Scope** scope = module->astScopes.find(node)) return StackPusher{stack, *scope}; else return std::nullopt; } void checkForInternalFamily(TypeId ty, Location location) { InternalFamilyFinder finder(functionDeclStack); finder.traverse(ty); for (TypeId internal : finder.internalFamilies) reportError(WhereClauseNeeded{internal}, location); for (TypePackId internal : finder.internalPackFamilies) reportError(PackWhereClauseNeeded{internal}, location); } TypeId checkForFamilyInhabitance(TypeId instance, Location location) { if (noTypeFamilyErrors.find(instance)) return instance; TxnLog fake{}; ErrorVec errors = reduceFamilies(instance, location, NotNull{&testArena}, builtinTypes, stack.back(), NotNull{&normalizer}, &fake, true).errors; if (errors.empty()) noTypeFamilyErrors.insert(instance); if (!isErrorSuppressing(location, instance)) reportErrors(std::move(errors)); return instance; } TypePackId lookupPack(AstExpr* expr) { // If a type isn't in the type graph, it probably means that a recursion limit was exceeded. // We'll just return anyType in these cases. Typechecking against any is very fast and this // allows us not to think about this very much in the actual typechecking logic. TypePackId* tp = module->astTypePacks.find(expr); if (tp) return follow(*tp); else return builtinTypes->anyTypePack; } TypeId lookupType(AstExpr* expr) { // If a type isn't in the type graph, it probably means that a recursion limit was exceeded. // We'll just return anyType in these cases. Typechecking against any is very fast and this // allows us not to think about this very much in the actual typechecking logic. TypeId* ty = module->astTypes.find(expr); if (ty) return checkForFamilyInhabitance(follow(*ty), expr->location); TypePackId* tp = module->astTypePacks.find(expr); if (tp) return checkForFamilyInhabitance(flattenPack(*tp), expr->location); return builtinTypes->anyType; } TypeId lookupAnnotation(AstType* annotation) { if (FFlag::DebugLuauMagicTypes) { if (auto ref = annotation->as(); ref && ref->name == "_luau_print" && ref->parameters.size > 0) { if (auto ann = ref->parameters.data[0].type) { TypeId argTy = lookupAnnotation(ref->parameters.data[0].type); luauPrintLine(format( "_luau_print (%d, %d): %s\n", annotation->location.begin.line, annotation->location.begin.column, toString(argTy).c_str())); return follow(argTy); } } } TypeId* ty = module->astResolvedTypes.find(annotation); LUAU_ASSERT(ty); return checkForFamilyInhabitance(follow(*ty), annotation->location); } TypePackId lookupPackAnnotation(AstTypePack* annotation) { TypePackId* tp = module->astResolvedTypePacks.find(annotation); LUAU_ASSERT(tp); return follow(*tp); } TypeId lookupExpectedType(AstExpr* expr) { if (TypeId* ty = module->astExpectedTypes.find(expr)) return follow(*ty); return builtinTypes->anyType; } TypePackId lookupExpectedPack(AstExpr* expr, TypeArena& arena) { if (TypeId* ty = module->astExpectedTypes.find(expr)) return arena.addTypePack(TypePack{{follow(*ty)}, std::nullopt}); return builtinTypes->anyTypePack; } TypePackId reconstructPack(AstArray exprs, TypeArena& arena) { if (exprs.size == 0) return arena.addTypePack(TypePack{{}, std::nullopt}); std::vector head; for (size_t i = 0; i < exprs.size - 1; ++i) { head.push_back(lookupType(exprs.data[i])); } TypePackId tail = lookupPack(exprs.data[exprs.size - 1]); return arena.addTypePack(TypePack{head, tail}); } Scope* findInnermostScope(Location location) { Scope* bestScope = module->getModuleScope().get(); Location bestLocation = module->scopes[0].first; for (size_t i = 0; i < module->scopes.size(); ++i) { auto& [scopeBounds, scope] = module->scopes[i]; if (scopeBounds.encloses(location)) { if (scopeBounds.begin > bestLocation.begin || scopeBounds.end < bestLocation.end) { bestScope = scope.get(); bestLocation = scopeBounds; } } } return bestScope; } void visit(AstStat* stat) { auto pusher = pushStack(stat); if (auto s = stat->as()) return visit(s); else if (auto s = stat->as()) return visit(s); else if (auto s = stat->as()) return visit(s); else if (auto s = stat->as()) return visit(s); else if (auto s = stat->as()) return visit(s); else if (auto s = stat->as()) return visit(s); else if (auto s = stat->as()) return visit(s); else if (auto s = stat->as()) return visit(s); else if (auto s = stat->as()) return visit(s); else if (auto s = stat->as()) return visit(s); else if (auto s = stat->as()) return visit(s); else if (auto s = stat->as()) return visit(s); else if (auto s = stat->as()) return visit(s); else if (auto s = stat->as()) return visit(s); else if (auto s = stat->as()) return visit(s); else if (auto s = stat->as()) return visit(s); else if (auto s = stat->as()) return visit(s); else if (auto s = stat->as()) return visit(s); else if (auto s = stat->as()) return visit(s); else if (auto s = stat->as()) return visit(s); else LUAU_ASSERT(!"TypeChecker2 encountered an unknown node type"); } void visit(AstStatBlock* block) { auto StackPusher = pushStack(block); for (AstStat* statement : block->body) visit(statement); } void visit(AstStatIf* ifStatement) { visit(ifStatement->condition, ValueContext::RValue); visit(ifStatement->thenbody); if (ifStatement->elsebody) visit(ifStatement->elsebody); } void visit(AstStatWhile* whileStatement) { visit(whileStatement->condition, ValueContext::RValue); visit(whileStatement->body); } void visit(AstStatRepeat* repeatStatement) { visit(repeatStatement->body); visit(repeatStatement->condition, ValueContext::RValue); } void visit(AstStatBreak*) {} void visit(AstStatContinue*) {} void visit(AstStatReturn* ret) { Scope* scope = findInnermostScope(ret->location); TypePackId expectedRetType = scope->returnType; TypeArena* arena = &testArena; TypePackId actualRetType = reconstructPack(ret->list, *arena); Unifier u{NotNull{&normalizer}, stack.back(), ret->location, Covariant}; u.hideousFixMeGenericsAreActuallyFree = true; u.tryUnify(actualRetType, expectedRetType); const bool ok = (u.errors.empty() && u.log.empty()) || isErrorSuppressing(ret->location, actualRetType, ret->location, expectedRetType); if (!ok) { for (const TypeError& e : u.errors) reportError(e); } for (AstExpr* expr : ret->list) visit(expr, ValueContext::RValue); } void visit(AstStatExpr* expr) { visit(expr->expr, ValueContext::RValue); } void visit(AstStatLocal* local) { size_t count = std::max(local->values.size, local->vars.size); for (size_t i = 0; i < count; ++i) { AstExpr* value = i < local->values.size ? local->values.data[i] : nullptr; const bool isPack = value && (value->is() || value->is()); if (value) visit(value, ValueContext::RValue); if (i != local->values.size - 1 || !isPack) { AstLocal* var = i < local->vars.size ? local->vars.data[i] : nullptr; if (var && var->annotation) { TypeId annotationType = lookupAnnotation(var->annotation); TypeId valueType = value ? lookupType(value) : nullptr; if (valueType) { reportErrors(tryUnify(stack.back(), value->location, valueType, annotationType)); } visit(var->annotation); } } else if (value) { TypePackId valuePack = lookupPack(value); TypePack valueTypes; if (i < local->vars.size) valueTypes = extendTypePack(module->internalTypes, builtinTypes, valuePack, local->vars.size - i); Location errorLocation; for (size_t j = i; j < local->vars.size; ++j) { if (j - i >= valueTypes.head.size()) { errorLocation = local->vars.data[j]->location; break; } AstLocal* var = local->vars.data[j]; if (var->annotation) { TypeId varType = lookupAnnotation(var->annotation); reportErrors(tryUnify(stack.back(), value->location, valueTypes.head[j - i], varType)); visit(var->annotation); } } if (valueTypes.head.size() < local->vars.size - i) { reportError( CountMismatch{ // We subtract 1 here because the final AST // expression is not worth one value. It is worth 0 // or more depending on valueTypes.head local->values.size - 1 + valueTypes.head.size(), std::nullopt, local->vars.size, local->values.data[local->values.size - 1]->is() ? CountMismatch::FunctionResult : CountMismatch::ExprListResult, }, errorLocation); } } } } void visit(AstStatFor* forStatement) { NotNull scope = stack.back(); if (forStatement->var->annotation) { visit(forStatement->var->annotation); reportErrors(tryUnify(scope, forStatement->var->location, builtinTypes->numberType, lookupAnnotation(forStatement->var->annotation))); } auto checkNumber = [this, scope](AstExpr* expr) { if (!expr) return; visit(expr, ValueContext::RValue); reportErrors(tryUnify(scope, expr->location, lookupType(expr), builtinTypes->numberType)); }; checkNumber(forStatement->from); checkNumber(forStatement->to); checkNumber(forStatement->step); visit(forStatement->body); } void visit(AstStatForIn* forInStatement) { for (AstLocal* local : forInStatement->vars) { if (local->annotation) visit(local->annotation); } for (AstExpr* expr : forInStatement->values) visit(expr, ValueContext::RValue); visit(forInStatement->body); // Rule out crazy stuff. Maybe possible if the file is not syntactically valid. if (!forInStatement->vars.size || !forInStatement->values.size) return; NotNull scope = stack.back(); TypeArena& arena = testArena; std::vector variableTypes; for (AstLocal* var : forInStatement->vars) { std::optional ty = scope->lookup(var); LUAU_ASSERT(ty); variableTypes.emplace_back(*ty); } AstExpr* firstValue = forInStatement->values.data[0]; // we need to build up a typepack for the iterators/values portion of the for-in statement. std::vector valueTypes; std::optional iteratorTail; // since the first value may be the only iterator (e.g. if it is a call), we want to // look to see if it has a resulting typepack as our iterators. TypePackId* retPack = module->astTypePacks.find(firstValue); if (retPack) { auto [head, tail] = flatten(*retPack); valueTypes = head; iteratorTail = tail; } else { valueTypes.emplace_back(lookupType(firstValue)); } // if the initial and expected types from the iterator unified during constraint solving, // we'll have a resolved type to use here, but we'll only use it if either the iterator is // directly present in the for-in statement or if we have an iterator state constraining us TypeId* resolvedTy = module->astForInNextTypes.find(firstValue); if (resolvedTy && (!retPack || valueTypes.size() > 1)) valueTypes[0] = *resolvedTy; for (size_t i = 1; i < forInStatement->values.size - 1; ++i) { valueTypes.emplace_back(lookupType(forInStatement->values.data[i])); } // if we had more than one value, the tail from the first value is no longer appropriate to use. if (forInStatement->values.size > 1) { auto [head, tail] = flatten(lookupPack(forInStatement->values.data[forInStatement->values.size - 1])); valueTypes.insert(valueTypes.end(), head.begin(), head.end()); iteratorTail = tail; } // and now we can put everything together to get the actual typepack of the iterators. TypePackId iteratorPack = arena.addTypePack(valueTypes, iteratorTail); // ... and then expand it out to 3 values (if possible) TypePack iteratorTypes = extendTypePack(arena, builtinTypes, iteratorPack, 3); if (iteratorTypes.head.empty()) { reportError(GenericError{"for..in loops require at least one value to iterate over. Got zero"}, getLocation(forInStatement->values)); return; } TypeId iteratorTy = follow(iteratorTypes.head[0]); auto checkFunction = [this, &arena, &scope, &forInStatement, &variableTypes]( const FunctionType* iterFtv, std::vector iterTys, bool isMm) { if (iterTys.size() < 1 || iterTys.size() > 3) { if (isMm) reportError(GenericError{"__iter metamethod must return (next[, table[, state]])"}, getLocation(forInStatement->values)); else reportError(GenericError{"for..in loops must be passed (next[, table[, state]])"}, getLocation(forInStatement->values)); return; } // It is okay if there aren't enough iterators, but the iteratee must provide enough. TypePack expectedVariableTypes = extendTypePack(arena, builtinTypes, iterFtv->retTypes, variableTypes.size()); if (expectedVariableTypes.head.size() < variableTypes.size()) { if (isMm) reportError( GenericError{"__iter metamethod's next() function does not return enough values"}, getLocation(forInStatement->values)); else reportError(GenericError{"next() does not return enough values"}, forInStatement->values.data[0]->location); } for (size_t i = 0; i < std::min(expectedVariableTypes.head.size(), variableTypes.size()); ++i) reportErrors(tryUnify(scope, forInStatement->vars.data[i]->location, variableTypes[i], expectedVariableTypes.head[i])); // nextFn is going to be invoked with (arrayTy, startIndexTy) // It will be passed two arguments on every iteration save the // first. // It may be invoked with 0 or 1 argument on the first iteration. // This depends on the types in iterateePack and therefore // iteratorTypes. // If the iteratee is an error type, then we can't really say anything else about iteration over it. // After all, it _could've_ been a table. if (get(follow(flattenPack(iterFtv->argTypes)))) return; // If iteratorTypes is too short to be a valid call to nextFn, we have to report a count mismatch error. // If 2 is too short to be a valid call to nextFn, we have to report a count mismatch error. // If 2 is too long to be a valid call to nextFn, we have to report a count mismatch error. auto [minCount, maxCount] = getParameterExtents(TxnLog::empty(), iterFtv->argTypes, /*includeHiddenVariadics*/ true); TypePack flattenedArgTypes = extendTypePack(arena, builtinTypes, iterFtv->argTypes, 2); size_t firstIterationArgCount = iterTys.empty() ? 0 : iterTys.size() - 1; size_t actualArgCount = expectedVariableTypes.head.size(); if (firstIterationArgCount < minCount) { if (isMm) reportError(GenericError{"__iter metamethod must return (next[, table[, state]])"}, getLocation(forInStatement->values)); else reportError(CountMismatch{2, std::nullopt, firstIterationArgCount, CountMismatch::Arg}, forInStatement->values.data[0]->location); } else if (actualArgCount < minCount) { if (isMm) reportError(GenericError{"__iter metamethod must return (next[, table[, state]])"}, getLocation(forInStatement->values)); else reportError(CountMismatch{2, std::nullopt, firstIterationArgCount, CountMismatch::Arg}, forInStatement->values.data[0]->location); } if (iterTys.size() >= 2 && flattenedArgTypes.head.size() > 0) { size_t valueIndex = forInStatement->values.size > 1 ? 1 : 0; reportErrors(tryUnify(scope, forInStatement->values.data[valueIndex]->location, iterTys[1], flattenedArgTypes.head[0])); } if (iterTys.size() == 3 && flattenedArgTypes.head.size() > 1) { size_t valueIndex = forInStatement->values.size > 2 ? 2 : 0; reportErrors(tryUnify(scope, forInStatement->values.data[valueIndex]->location, iterTys[2], flattenedArgTypes.head[1])); } }; const NormalizedType* iteratorNorm = normalizer.normalize(iteratorTy); if (!iteratorNorm) reportError(NormalizationTooComplex{}, firstValue->location); /* * If the first iterator argument is a function * * There must be 1 to 3 iterator arguments. Name them (nextTy, * arrayTy, startIndexTy) * * The return type of nextTy() must correspond to the variables' * types and counts. HOWEVER the first iterator will never be nil. * * The first return value of nextTy must be compatible with * startIndexTy. * * The first argument to nextTy() must be compatible with arrayTy if * present. nil if not. * * The second argument to nextTy() must be compatible with * startIndexTy if it is present. Else, it must be compatible with * nil. * * nextTy() must be callable with only 2 arguments. */ if (const FunctionType* nextFn = get(iteratorTy)) { checkFunction(nextFn, iteratorTypes.head, false); } else if (const TableType* ttv = get(iteratorTy)) { if ((forInStatement->vars.size == 1 || forInStatement->vars.size == 2) && ttv->indexer) { reportErrors(tryUnify(scope, forInStatement->vars.data[0]->location, variableTypes[0], ttv->indexer->indexType)); if (variableTypes.size() == 2) reportErrors(tryUnify(scope, forInStatement->vars.data[1]->location, variableTypes[1], ttv->indexer->indexResultType)); } else reportError(GenericError{"Cannot iterate over a table without indexer"}, forInStatement->values.data[0]->location); } else if (get(iteratorTy) || get(iteratorTy) || get(iteratorTy)) { // nothing } else if (isOptional(iteratorTy) && !(iteratorNorm && iteratorNorm->shouldSuppressErrors())) { reportError(OptionalValueAccess{iteratorTy}, forInStatement->values.data[0]->location); } else if (std::optional iterMmTy = findMetatableEntry(builtinTypes, module->errors, iteratorTy, "__iter", forInStatement->values.data[0]->location)) { Instantiation instantiation{TxnLog::empty(), &arena, TypeLevel{}, scope}; if (std::optional instantiatedIterMmTy = instantiation.substitute(*iterMmTy)) { if (const FunctionType* iterMmFtv = get(*instantiatedIterMmTy)) { TypePackId argPack = arena.addTypePack({iteratorTy}); reportErrors(tryUnify(scope, forInStatement->values.data[0]->location, argPack, iterMmFtv->argTypes)); TypePack mmIteratorTypes = extendTypePack(arena, builtinTypes, iterMmFtv->retTypes, 3); if (mmIteratorTypes.head.size() == 0) { reportError(GenericError{"__iter must return at least one value"}, forInStatement->values.data[0]->location); return; } TypeId nextFn = follow(mmIteratorTypes.head[0]); if (std::optional instantiatedNextFn = instantiation.substitute(nextFn)) { std::vector instantiatedIteratorTypes = mmIteratorTypes.head; instantiatedIteratorTypes[0] = *instantiatedNextFn; if (const FunctionType* nextFtv = get(*instantiatedNextFn)) { checkFunction(nextFtv, instantiatedIteratorTypes, true); } else if (!isErrorSuppressing(forInStatement->values.data[0]->location, *instantiatedNextFn)) { reportError(CannotCallNonFunction{*instantiatedNextFn}, forInStatement->values.data[0]->location); } } else { reportError(UnificationTooComplex{}, forInStatement->values.data[0]->location); } } else if (!isErrorSuppressing(forInStatement->values.data[0]->location, *iterMmTy)) { // TODO: This will not tell the user that this is because the // metamethod isn't callable. This is not ideal, and we should // improve this error message. // TODO: This will also not handle intersections of functions or // callable tables (which are supported by the runtime). reportError(CannotCallNonFunction{*iterMmTy}, forInStatement->values.data[0]->location); } } else { reportError(UnificationTooComplex{}, forInStatement->values.data[0]->location); } } else if (iteratorNorm && iteratorNorm->hasTopTable()) { // nothing } else if (!iteratorNorm || !iteratorNorm->shouldSuppressErrors()) { reportError(CannotCallNonFunction{iteratorTy}, forInStatement->values.data[0]->location); } } void visit(AstStatAssign* assign) { size_t count = std::min(assign->vars.size, assign->values.size); for (size_t i = 0; i < count; ++i) { AstExpr* lhs = assign->vars.data[i]; visit(lhs, ValueContext::LValue); TypeId lhsType = lookupType(lhs); AstExpr* rhs = assign->values.data[i]; visit(rhs, ValueContext::RValue); TypeId rhsType = lookupType(rhs); if (get(lhsType)) continue; if (!isSubtype(rhsType, lhsType, stack.back()) && !isErrorSuppressing(assign->vars.data[i]->location, lhsType, assign->values.data[i]->location, rhsType)) { reportError(TypeMismatch{lhsType, rhsType}, rhs->location); } } } void visit(AstStatCompoundAssign* stat) { AstExprBinary fake{stat->location, stat->op, stat->var, stat->value}; TypeId resultTy = visit(&fake, stat); TypeId varTy = lookupType(stat->var); reportErrors(tryUnify(stack.back(), stat->location, resultTy, varTy)); } void visit(AstStatFunction* stat) { visit(stat->name, ValueContext::LValue); visit(stat->func); } void visit(AstStatLocalFunction* stat) { visit(stat->func); } void visit(const AstTypeList* typeList) { for (AstType* ty : typeList->types) visit(ty); if (typeList->tailType) visit(typeList->tailType); } void visit(AstStatTypeAlias* stat) { visitGenerics(stat->generics, stat->genericPacks); visit(stat->type); } void visit(AstTypeList types) { for (AstType* type : types.types) visit(type); if (types.tailType) visit(types.tailType); } void visit(AstStatDeclareFunction* stat) { visitGenerics(stat->generics, stat->genericPacks); visit(stat->params); visit(stat->retTypes); } void visit(AstStatDeclareGlobal* stat) { visit(stat->type); } void visit(AstStatDeclareClass* stat) { for (const AstDeclaredClassProp& prop : stat->props) visit(prop.ty); } void visit(AstStatError* stat) { for (AstExpr* expr : stat->expressions) visit(expr, ValueContext::RValue); for (AstStat* s : stat->statements) visit(s); } void visit(AstExpr* expr, ValueContext context) { auto StackPusher = pushStack(expr); if (auto e = expr->as()) return visit(e, context); else if (auto e = expr->as()) return visit(e); else if (auto e = expr->as()) return visit(e); else if (auto e = expr->as()) return visit(e); else if (auto e = expr->as()) return visit(e); else if (auto e = expr->as()) return visit(e); else if (auto e = expr->as()) return visit(e); else if (auto e = expr->as()) return visit(e); else if (auto e = expr->as()) return visit(e); else if (auto e = expr->as()) return visit(e, context); else if (auto e = expr->as()) return visit(e, context); else if (auto e = expr->as()) return visit(e); else if (auto e = expr->as()) return visit(e); else if (auto e = expr->as()) return visit(e); else if (auto e = expr->as()) { visit(e); return; } else if (auto e = expr->as()) return visit(e); else if (auto e = expr->as()) return visit(e); else if (auto e = expr->as()) return visit(e); else if (auto e = expr->as()) return visit(e); else LUAU_ASSERT(!"TypeChecker2 encountered an unknown expression type"); } void visit(AstExprGroup* expr, ValueContext context) { visit(expr->expr, context); } void visit(AstExprConstantNil* expr) { NotNull scope = stack.back(); TypeId actualType = lookupType(expr); TypeId expectedType = builtinTypes->nilType; LUAU_ASSERT(isSubtype(actualType, expectedType, scope)); } void visit(AstExprConstantBool* expr) { NotNull scope = stack.back(); TypeId actualType = lookupType(expr); TypeId expectedType = builtinTypes->booleanType; LUAU_ASSERT(isSubtype(actualType, expectedType, scope)); } void visit(AstExprConstantNumber* expr) { NotNull scope = stack.back(); TypeId actualType = lookupType(expr); TypeId expectedType = builtinTypes->numberType; LUAU_ASSERT(isSubtype(actualType, expectedType, scope)); } void visit(AstExprConstantString* expr) { NotNull scope = stack.back(); TypeId actualType = lookupType(expr); TypeId expectedType = builtinTypes->stringType; LUAU_ASSERT(isSubtype(actualType, expectedType, scope)); } void visit(AstExprLocal* expr) { // TODO! } void visit(AstExprGlobal* expr) { // TODO! } void visit(AstExprVarargs* expr) { // TODO! } // Note: this is intentionally separated from `visit(AstExprCall*)` for stack allocation purposes. void visitCall(AstExprCall* call) { TypePack args; std::vector argExprs; argExprs.reserve(call->args.size + 1); TypeId* originalCallTy = module->astOriginalCallTypes.find(call); TypeId* selectedOverloadTy = module->astOverloadResolvedTypes.find(call); if (!originalCallTy && !selectedOverloadTy) return; TypeId fnTy = follow(selectedOverloadTy ? *selectedOverloadTy : *originalCallTy); if (get(fnTy) || get(fnTy) || get(fnTy)) return; else if (isOptional(fnTy)) { reportError(OptionalValueAccess{fnTy}, call->func->location); return; } if (call->self) { AstExprIndexName* indexExpr = call->func->as(); if (!indexExpr) ice->ice("method call expression has no 'self'"); args.head.push_back(lookupType(indexExpr->expr)); argExprs.push_back(indexExpr->expr); } else if (findMetatableEntry(builtinTypes, module->errors, *originalCallTy, "__call", call->func->location)) { args.head.insert(args.head.begin(), lookupType(call->func)); argExprs.push_back(call->func); } for (size_t i = 0; i < call->args.size; ++i) { AstExpr* arg = call->args.data[i]; argExprs.push_back(arg); TypeId* argTy = module->astTypes.find(arg); if (argTy) args.head.push_back(*argTy); else if (i == call->args.size - 1) { if (auto argTail = module->astTypePacks.find(arg)) { auto [head, tail] = flatten(*argTail); args.head.insert(args.head.end(), head.begin(), head.end()); args.tail = tail; } else args.tail = builtinTypes->anyTypePack; } else args.head.push_back(builtinTypes->anyType); } FunctionCallResolver resolver{ builtinTypes, NotNull{&testArena}, NotNull{&normalizer}, NotNull{stack.back()}, ice, call->location, }; resolver.resolve(fnTy, &args, call->func, &argExprs); auto norm = normalizer.normalize(fnTy); if (!norm) reportError(NormalizationTooComplex{}, call->func->location); if (norm && norm->shouldSuppressErrors()) return; // error suppressing function type! else if (!resolver.ok.empty()) return; // We found a call that works, so this is ok. else if (!norm || !normalizer.isInhabited(norm)) return; // Ok. Calling an uninhabited type is no-op. else if (!resolver.nonviableOverloads.empty()) { if (resolver.nonviableOverloads.size() == 1 && !isErrorSuppressing(call->func->location, resolver.nonviableOverloads.front().first)) reportErrors(resolver.nonviableOverloads.front().second); else { std::string s = "None of the overloads for function that accept "; s += std::to_string(args.head.size()); s += " arguments are compatible."; reportError(GenericError{std::move(s)}, call->location); } } else if (!resolver.arityMismatches.empty()) { if (resolver.arityMismatches.size() == 1) reportErrors(resolver.arityMismatches.front().second); else { std::string s = "No overload for function accepts "; s += std::to_string(args.head.size()); s += " arguments."; reportError(GenericError{std::move(s)}, call->location); } } else if (!resolver.nonFunctions.empty()) reportError(CannotCallNonFunction{fnTy}, call->func->location); else LUAU_ASSERT(!"Generating the best possible error from this function call resolution was inexhaustive?"); if (resolver.arityMismatches.size() > 1 || resolver.nonviableOverloads.size() > 1) { std::string s = "Available overloads: "; std::vector overloads; if (resolver.nonviableOverloads.empty()) { for (const auto& [ty, p] : resolver.resolution) { if (p.first == FunctionCallResolver::TypeIsNotAFunction) continue; overloads.push_back(ty); } } else { for (const auto& [ty, _] : resolver.nonviableOverloads) overloads.push_back(ty); } for (size_t i = 0; i < overloads.size(); ++i) { if (i > 0) s += (i == overloads.size() - 1) ? "; and " : "; "; s += toString(overloads[i]); } reportError(ExtraInformation{std::move(s)}, call->func->location); } } struct FunctionCallResolver { enum Analysis { Ok, TypeIsNotAFunction, ArityMismatch, OverloadIsNonviable, // Arguments were incompatible with the overload's parameters, but were otherwise compatible by arity. }; NotNull builtinTypes; NotNull arena; NotNull normalizer; NotNull scope; NotNull ice; Location callLoc; std::vector ok; std::vector nonFunctions; std::vector> arityMismatches; std::vector> nonviableOverloads; InsertionOrderedMap> resolution; private: std::optional tryUnify(const Location& location, TypeId subTy, TypeId superTy, const LiteralProperties* literalProperties = nullptr) { Unifier u{normalizer, scope, location, Covariant}; u.ctx = CountMismatch::Arg; u.hideousFixMeGenericsAreActuallyFree = true; u.enableNewSolver(); u.tryUnify(subTy, superTy, /*isFunctionCall*/ false, /*isIntersection*/ false, literalProperties); if (u.errors.empty()) return std::nullopt; return std::move(u.errors); } std::optional tryUnify(const Location& location, TypePackId subTy, TypePackId superTy) { Unifier u{normalizer, scope, location, Covariant}; u.ctx = CountMismatch::Arg; u.hideousFixMeGenericsAreActuallyFree = true; u.enableNewSolver(); u.tryUnify(subTy, superTy); if (u.errors.empty()) return std::nullopt; return std::move(u.errors); } std::pair checkOverload( TypeId fnTy, const TypePack* args, AstExpr* fnLoc, const std::vector* argExprs, bool callMetamethodOk = true) { fnTy = follow(fnTy); ErrorVec discard; if (get(fnTy) || get(fnTy) || get(fnTy)) return {Ok, {}}; else if (auto fn = get(fnTy)) return checkOverload_(fnTy, fn, args, fnLoc, argExprs); // Intentionally split to reduce the stack pressure of this function. else if (auto callMm = findMetatableEntry(builtinTypes, discard, fnTy, "__call", callLoc); callMm && callMetamethodOk) { // Calling a metamethod forwards the `fnTy` as self. TypePack withSelf = *args; withSelf.head.insert(withSelf.head.begin(), fnTy); std::vector withSelfExprs = *argExprs; withSelfExprs.insert(withSelfExprs.begin(), fnLoc); return checkOverload(*callMm, &withSelf, fnLoc, &withSelfExprs, /*callMetamethodOk=*/false); } else return {TypeIsNotAFunction, {}}; // Intentionally empty. We can just fabricate the type error later on. } static bool isLiteral(AstExpr* expr) { if (auto group = expr->as()) return isLiteral(group->expr); else if (auto assertion = expr->as()) return isLiteral(assertion->expr); return expr->is() || expr->is() || expr->is() || expr->is() || expr->is() || expr->is(); } static std::unique_ptr buildLiteralPropertiesSet(AstExpr* expr) { const AstExprTable* table = expr->as(); if (!table) return nullptr; std::unique_ptr result = std::make_unique(Name{}); for (const AstExprTable::Item& item : table->items) { if (item.kind != AstExprTable::Item::Record) continue; AstExprConstantString* keyExpr = item.key->as(); LUAU_ASSERT(keyExpr); if (isLiteral(item.value)) result->insert(Name{keyExpr->value.begin(), keyExpr->value.end()}); } return result; } LUAU_NOINLINE std::pair checkOverload_( TypeId fnTy, const FunctionType* fn, const TypePack* args, AstExpr* fnExpr, const std::vector* argExprs) { TxnLog fake; FamilyGraphReductionResult result = reduceFamilies(fnTy, callLoc, arena, builtinTypes, scope, normalizer, &fake, /*force=*/true); if (!result.errors.empty()) return {OverloadIsNonviable, result.errors}; ErrorVec argumentErrors; // Reminder: Functions have parameters. You provide arguments. auto paramIter = begin(fn->argTypes); size_t argOffset = 0; while (paramIter != end(fn->argTypes)) { if (argOffset >= args->head.size()) break; TypeId paramTy = *paramIter; TypeId argTy = args->head[argOffset]; AstExpr* argLoc = argExprs->at(argOffset >= argExprs->size() ? argExprs->size() - 1 : argOffset); std::unique_ptr literalProperties{buildLiteralPropertiesSet(argLoc)}; if (auto errors = tryUnify(argLoc->location, argTy, paramTy, literalProperties.get())) { // Since we're stopping right here, we need to decide if this is a nonviable overload or if there is an arity mismatch. // If it's a nonviable overload, then we need to keep going to get all type errors. auto [minParams, optMaxParams] = getParameterExtents(TxnLog::empty(), fn->argTypes); if (args->head.size() < minParams) return {ArityMismatch, *errors}; else argumentErrors.insert(argumentErrors.end(), errors->begin(), errors->end()); } ++paramIter; ++argOffset; } while (argOffset < args->head.size()) { // If we can iterate over the head of arguments, then we have exhausted the head of the parameters. LUAU_ASSERT(paramIter == end(fn->argTypes)); AstExpr* argExpr = argExprs->at(argOffset >= argExprs->size() ? argExprs->size() - 1 : argOffset); if (!paramIter.tail()) { auto [minParams, optMaxParams] = getParameterExtents(TxnLog::empty(), fn->argTypes); TypeError error{argExpr->location, CountMismatch{minParams, optMaxParams, args->head.size(), CountMismatch::Arg, false}}; return {ArityMismatch, {error}}; } else if (auto vtp = get(follow(paramIter.tail()))) { if (auto errors = tryUnify(argExpr->location, args->head[argOffset], vtp->ty)) argumentErrors.insert(argumentErrors.end(), errors->begin(), errors->end()); } else if (get(follow(paramIter.tail()))) argumentErrors.push_back(TypeError{argExpr->location, TypePackMismatch{fn->argTypes, arena->addTypePack(*args)}}); ++argOffset; } while (paramIter != end(fn->argTypes)) { // If we can iterate over parameters, then we have exhausted the head of the arguments. LUAU_ASSERT(argOffset == args->head.size()); // It may have a tail, however, so check that. if (auto vtp = get(follow(args->tail))) { AstExpr* argExpr = argExprs->at(argExprs->size() - 1); if (auto errors = tryUnify(argExpr->location, vtp->ty, *paramIter)) argumentErrors.insert(argumentErrors.end(), errors->begin(), errors->end()); } else if (!isOptional(*paramIter)) { AstExpr* argExpr = argExprs->empty() ? fnExpr : argExprs->at(argExprs->size() - 1); // It is ok to have excess parameters as long as they are all optional. auto [minParams, optMaxParams] = getParameterExtents(TxnLog::empty(), fn->argTypes); TypeError error{argExpr->location, CountMismatch{minParams, optMaxParams, args->head.size(), CountMismatch::Arg, false}}; return {ArityMismatch, {error}}; } ++paramIter; } // We hit the end of the heads for both parameters and arguments, so check their tails. LUAU_ASSERT(paramIter == end(fn->argTypes)); LUAU_ASSERT(argOffset == args->head.size()); const Location argLoc = argExprs->empty() ? Location{} // TODO : argExprs->at(argExprs->size() - 1)->location; if (paramIter.tail() && args->tail) { if (auto errors = tryUnify(argLoc, *args->tail, *paramIter.tail())) argumentErrors.insert(argumentErrors.end(), errors->begin(), errors->end()); } else if (paramIter.tail()) { const TypePackId paramTail = follow(*paramIter.tail()); if (get(paramTail)) { argumentErrors.push_back(TypeError{argLoc, TypePackMismatch{fn->argTypes, arena->addTypePack(*args)}}); } else if (get(paramTail)) { // Nothing. This is ok. } } return {argumentErrors.empty() ? Ok : OverloadIsNonviable, argumentErrors}; } size_t indexof(Analysis analysis) { switch (analysis) { case Ok: return ok.size(); case TypeIsNotAFunction: return nonFunctions.size(); case ArityMismatch: return arityMismatches.size(); case OverloadIsNonviable: return nonviableOverloads.size(); } ice->ice("Inexhaustive switch in FunctionCallResolver::indexof"); } void add(Analysis analysis, TypeId ty, ErrorVec&& errors) { resolution.insert(ty, {analysis, indexof(analysis)}); switch (analysis) { case Ok: LUAU_ASSERT(errors.empty()); ok.push_back(ty); break; case TypeIsNotAFunction: LUAU_ASSERT(errors.empty()); nonFunctions.push_back(ty); break; case ArityMismatch: LUAU_ASSERT(!errors.empty()); arityMismatches.emplace_back(ty, std::move(errors)); break; case OverloadIsNonviable: LUAU_ASSERT(!errors.empty()); nonviableOverloads.emplace_back(ty, std::move(errors)); break; } } public: void resolve(TypeId fnTy, const TypePack* args, AstExpr* selfExpr, const std::vector* argExprs) { fnTy = follow(fnTy); auto it = get(fnTy); if (!it) { auto [analysis, errors] = checkOverload(fnTy, args, selfExpr, argExprs); add(analysis, fnTy, std::move(errors)); return; } for (TypeId ty : it) { if (resolution.find(ty) != resolution.end()) continue; auto [analysis, errors] = checkOverload(ty, args, selfExpr, argExprs); add(analysis, ty, std::move(errors)); } } }; void visit(AstExprCall* call) { visit(call->func, ValueContext::RValue); for (AstExpr* arg : call->args) visit(arg, ValueContext::RValue); visitCall(call); } std::optional tryStripUnionFromNil(TypeId ty) { if (const UnionType* utv = get(ty)) { if (!std::any_of(begin(utv), end(utv), isNil)) return ty; std::vector result; for (TypeId option : utv) { if (!isNil(option)) result.push_back(option); } if (result.empty()) return std::nullopt; return result.size() == 1 ? result[0] : module->internalTypes.addType(UnionType{std::move(result)}); } return std::nullopt; } TypeId stripFromNilAndReport(TypeId ty, const Location& location) { ty = follow(ty); if (auto utv = get(ty)) { if (!std::any_of(begin(utv), end(utv), isNil)) return ty; } if (std::optional strippedUnion = tryStripUnionFromNil(ty)) { reportError(OptionalValueAccess{ty}, location); return follow(*strippedUnion); } return ty; } void visitExprName(AstExpr* expr, Location location, const std::string& propName, ValueContext context, TypeId astIndexExprTy) { visit(expr, ValueContext::RValue); TypeId leftType = stripFromNilAndReport(lookupType(expr), location); checkIndexTypeFromType(leftType, propName, location, context, astIndexExprTy); } void visit(AstExprIndexName* indexName, ValueContext context) { // If we're indexing like _.foo - foo could either be a prop or a string. visitExprName(indexName->expr, indexName->location, indexName->index.value, context, builtinTypes->stringType); } void visit(AstExprIndexExpr* indexExpr, ValueContext context) { if (auto str = indexExpr->index->as()) { TypeId astIndexExprType = lookupType(indexExpr->index); const std::string stringValue(str->value.data, str->value.size); visitExprName(indexExpr->expr, indexExpr->location, stringValue, context, astIndexExprType); return; } visit(indexExpr->expr, ValueContext::RValue); visit(indexExpr->index, ValueContext::RValue); NotNull scope = stack.back(); TypeId exprType = lookupType(indexExpr->expr); TypeId indexType = lookupType(indexExpr->index); if (auto tt = get(exprType)) { if (tt->indexer) reportErrors(tryUnify(scope, indexExpr->index->location, indexType, tt->indexer->indexType)); else reportError(CannotExtendTable{exprType, CannotExtendTable::Indexer, "indexer??"}, indexExpr->location); } else if (auto cls = get(exprType); cls && cls->indexer) reportErrors(tryUnify(scope, indexExpr->index->location, indexType, cls->indexer->indexType)); else if (get(exprType) && isOptional(exprType)) reportError(OptionalValueAccess{exprType}, indexExpr->location); } void visit(AstExprFunction* fn) { auto StackPusher = pushStack(fn); visitGenerics(fn->generics, fn->genericPacks); TypeId inferredFnTy = lookupType(fn); functionDeclStack.push_back(inferredFnTy); const NormalizedType* normalizedFnTy = normalizer.normalize(inferredFnTy); if (!normalizedFnTy) { reportError(CodeTooComplex{}, fn->location); } else if (get(normalizedFnTy->errors)) { // Nothing } else if (!normalizedFnTy->hasFunctions()) { ice->ice("Internal error: Lambda has non-function type " + toString(inferredFnTy), fn->location); } else { if (1 != normalizedFnTy->functions.parts.size()) ice->ice("Unexpected: Lambda has unexpected type " + toString(inferredFnTy), fn->location); const FunctionType* inferredFtv = get(normalizedFnTy->functions.parts.front()); LUAU_ASSERT(inferredFtv); // There is no way to write an annotation for the self argument, so we // cannot do anything to check it. auto argIt = begin(inferredFtv->argTypes); if (fn->self) ++argIt; for (const auto& arg : fn->args) { if (argIt == end(inferredFtv->argTypes)) break; if (arg->annotation) { TypeId inferredArgTy = *argIt; TypeId annotatedArgTy = lookupAnnotation(arg->annotation); if (!isSubtype(inferredArgTy, annotatedArgTy, stack.back()) && !isErrorSuppressing(arg->location, inferredArgTy, arg->annotation->location, annotatedArgTy)) { reportError(TypeMismatch{inferredArgTy, annotatedArgTy}, arg->location); } } ++argIt; } } visit(fn->body); functionDeclStack.pop_back(); } void visit(AstExprTable* expr) { // TODO! for (const AstExprTable::Item& item : expr->items) { if (item.key) visit(item.key, ValueContext::LValue); visit(item.value, ValueContext::RValue); } } void visit(AstExprUnary* expr) { visit(expr->expr, ValueContext::RValue); NotNull scope = stack.back(); TypeId operandType = lookupType(expr->expr); TypeId resultType = lookupType(expr); if (isErrorSuppressing(expr->expr->location, operandType)) return; if (auto it = kUnaryOpMetamethods.find(expr->op); it != kUnaryOpMetamethods.end()) { std::optional mm = findMetatableEntry(builtinTypes, module->errors, operandType, it->second, expr->location); if (mm) { if (const FunctionType* ftv = get(follow(*mm))) { if (std::optional ret = first(ftv->retTypes)) { if (expr->op == AstExprUnary::Op::Len) { reportErrors(tryUnify(scope, expr->location, follow(*ret), builtinTypes->numberType)); } } else { reportError(GenericError{format("Metamethod '%s' must return a value", it->second)}, expr->location); } std::optional firstArg = first(ftv->argTypes); if (!firstArg) { reportError(GenericError{"__unm metamethod must accept one argument"}, expr->location); return; } TypePackId expectedArgs = testArena.addTypePack({operandType}); TypePackId expectedRet = testArena.addTypePack({resultType}); TypeId expectedFunction = testArena.addType(FunctionType{expectedArgs, expectedRet}); ErrorVec errors = tryUnify(scope, expr->location, *mm, expectedFunction); if (!errors.empty() && !isErrorSuppressing(expr->expr->location, *firstArg, expr->expr->location, operandType)) { reportError(TypeMismatch{*firstArg, operandType}, expr->location); return; } } return; } } if (expr->op == AstExprUnary::Op::Len) { DenseHashSet seen{nullptr}; int recursionCount = 0; const NormalizedType* nty = normalizer.normalize(operandType); if (nty && nty->shouldSuppressErrors()) return; if (!hasLength(operandType, seen, &recursionCount)) { if (isOptional(operandType)) reportError(OptionalValueAccess{operandType}, expr->location); else reportError(NotATable{operandType}, expr->location); } } else if (expr->op == AstExprUnary::Op::Minus) { reportErrors(tryUnify(scope, expr->location, operandType, builtinTypes->numberType)); } else if (expr->op == AstExprUnary::Op::Not) { } else { LUAU_ASSERT(!"Unhandled unary operator"); } } TypeId visit(AstExprBinary* expr, AstNode* overrideKey = nullptr) { visit(expr->left, ValueContext::LValue); visit(expr->right, ValueContext::LValue); NotNull scope = stack.back(); bool isEquality = expr->op == AstExprBinary::Op::CompareEq || expr->op == AstExprBinary::Op::CompareNe; bool isComparison = expr->op >= AstExprBinary::Op::CompareEq && expr->op <= AstExprBinary::Op::CompareGe; bool isLogical = expr->op == AstExprBinary::Op::And || expr->op == AstExprBinary::Op::Or; TypeId leftType = lookupType(expr->left); TypeId rightType = lookupType(expr->right); TypeId expectedResult = lookupType(expr); if (get(expectedResult)) { checkForInternalFamily(expectedResult, expr->location); return expectedResult; } if (expr->op == AstExprBinary::Op::Or) { leftType = stripNil(builtinTypes, testArena, leftType); } const NormalizedType* normLeft = normalizer.normalize(leftType); const NormalizedType* normRight = normalizer.normalize(rightType); bool isStringOperation = (normLeft ? normLeft->isSubtypeOfString() : isString(leftType)) && (normRight ? normRight->isSubtypeOfString() : isString(rightType)); if (get(leftType) || get(leftType) || get(leftType)) return leftType; else if (get(rightType) || get(rightType) || get(rightType)) return rightType; else if ((normLeft && normLeft->shouldSuppressErrors()) || (normRight && normRight->shouldSuppressErrors())) return builtinTypes->anyType; // we can't say anything better if it's error suppressing but not any or error alone. if ((get(leftType) || get(leftType) || get(leftType)) && !isEquality && !isLogical) { auto name = getIdentifierOfBaseVar(expr->left); reportError(CannotInferBinaryOperation{expr->op, name, isComparison ? CannotInferBinaryOperation::OpKind::Comparison : CannotInferBinaryOperation::OpKind::Operation}, expr->location); return leftType; } bool typesHaveIntersection = normalizer.isIntersectionInhabited(leftType, rightType); if (auto it = kBinaryOpMetamethods.find(expr->op); it != kBinaryOpMetamethods.end()) { std::optional leftMt = getMetatable(leftType, builtinTypes); std::optional rightMt = getMetatable(rightType, builtinTypes); bool matches = leftMt == rightMt; if (isEquality && !matches) { auto testUnion = [&matches, builtinTypes = this->builtinTypes](const UnionType* utv, std::optional otherMt) { for (TypeId option : utv) { if (getMetatable(follow(option), builtinTypes) == otherMt) { matches = true; break; } } }; if (const UnionType* utv = get(leftType); utv && rightMt) { testUnion(utv, rightMt); } if (const UnionType* utv = get(rightType); utv && leftMt && !matches) { testUnion(utv, leftMt); } } // If we're working with things that are not tables, the metatable comparisons above are a little excessive // It's ok for one type to have a meta table and the other to not. In that case, we should fall back on // checking if the intersection of the types is inhabited. // TODO: Maybe add more checks here (e.g. for functions, classes, etc) if (!(get(leftType) || get(rightType))) if (!leftMt.has_value() || !rightMt.has_value()) matches = matches || typesHaveIntersection; if (!matches && isComparison) { reportError(GenericError{format("Types %s and %s cannot be compared with %s because they do not have the same metatable", toString(leftType).c_str(), toString(rightType).c_str(), toString(expr->op).c_str())}, expr->location); return builtinTypes->errorRecoveryType(); } std::optional mm; if (std::optional leftMm = findMetatableEntry(builtinTypes, module->errors, leftType, it->second, expr->left->location)) mm = leftMm; else if (std::optional rightMm = findMetatableEntry(builtinTypes, module->errors, rightType, it->second, expr->right->location)) { mm = rightMm; std::swap(leftType, rightType); } if (mm) { AstNode* key = expr; if (overrideKey != nullptr) key = overrideKey; TypeId* selectedOverloadTy = module->astOverloadResolvedTypes.find(key); if (!selectedOverloadTy) { // reportError(CodeTooComplex{}, expr->location); // was handled by a type family return expectedResult; } else if (const FunctionType* ftv = get(follow(*selectedOverloadTy))) { TypePackId expectedArgs; // For >= and > we invoke __lt and __le respectively with // swapped argument ordering. if (expr->op == AstExprBinary::Op::CompareGe || expr->op == AstExprBinary::Op::CompareGt) { expectedArgs = testArena.addTypePack({rightType, leftType}); } else { expectedArgs = testArena.addTypePack({leftType, rightType}); } TypePackId expectedRets; if (expr->op == AstExprBinary::CompareEq || expr->op == AstExprBinary::CompareNe || expr->op == AstExprBinary::CompareGe || expr->op == AstExprBinary::CompareGt || expr->op == AstExprBinary::Op::CompareLe || expr->op == AstExprBinary::Op::CompareLt) { expectedRets = testArena.addTypePack({builtinTypes->booleanType}); } else { expectedRets = testArena.addTypePack({testArena.freshType(scope, TypeLevel{})}); } TypeId expectedTy = testArena.addType(FunctionType(expectedArgs, expectedRets)); reportErrors(tryUnify(scope, expr->location, follow(*mm), expectedTy)); std::optional ret = first(ftv->retTypes); if (ret) { if (isComparison) { if (!isBoolean(follow(*ret))) { reportError(GenericError{format("Metamethod '%s' must return a boolean", it->second)}, expr->location); } return builtinTypes->booleanType; } else { return follow(*ret); } } else { if (isComparison) { reportError(GenericError{format("Metamethod '%s' must return a boolean", it->second)}, expr->location); } else { reportError(GenericError{format("Metamethod '%s' must return a value", it->second)}, expr->location); } return builtinTypes->errorRecoveryType(); } } else { reportError(CannotCallNonFunction{*mm}, expr->location); } return builtinTypes->errorRecoveryType(); } // If this is a string comparison, or a concatenation of strings, we // want to fall through to primitive behavior. else if (!isEquality && !(isStringOperation && (expr->op == AstExprBinary::Op::Concat || isComparison))) { if ((leftMt && !isString(leftType)) || (rightMt && !isString(rightType))) { if (isComparison) { reportError(GenericError{format( "Types '%s' and '%s' cannot be compared with %s because neither type's metatable has a '%s' metamethod", toString(leftType).c_str(), toString(rightType).c_str(), toString(expr->op).c_str(), it->second)}, expr->location); } else { reportError(GenericError{format( "Operator %s is not applicable for '%s' and '%s' because neither type's metatable has a '%s' metamethod", toString(expr->op).c_str(), toString(leftType).c_str(), toString(rightType).c_str(), it->second)}, expr->location); } return builtinTypes->errorRecoveryType(); } else if (!leftMt && !rightMt && (get(leftType) || get(rightType))) { if (isComparison) { reportError(GenericError{format("Types '%s' and '%s' cannot be compared with %s because neither type has a metatable", toString(leftType).c_str(), toString(rightType).c_str(), toString(expr->op).c_str())}, expr->location); } else { reportError(GenericError{format("Operator %s is not applicable for '%s' and '%s' because neither type has a metatable", toString(expr->op).c_str(), toString(leftType).c_str(), toString(rightType).c_str())}, expr->location); } return builtinTypes->errorRecoveryType(); } } } switch (expr->op) { case AstExprBinary::Op::Add: case AstExprBinary::Op::Sub: case AstExprBinary::Op::Mul: case AstExprBinary::Op::Div: case AstExprBinary::Op::Pow: case AstExprBinary::Op::Mod: reportErrors(tryUnify(scope, expr->left->location, leftType, builtinTypes->numberType)); reportErrors(tryUnify(scope, expr->right->location, rightType, builtinTypes->numberType)); return builtinTypes->numberType; case AstExprBinary::Op::Concat: reportErrors(tryUnify(scope, expr->left->location, leftType, builtinTypes->stringType)); reportErrors(tryUnify(scope, expr->right->location, rightType, builtinTypes->stringType)); return builtinTypes->stringType; case AstExprBinary::Op::CompareGe: case AstExprBinary::Op::CompareGt: case AstExprBinary::Op::CompareLe: case AstExprBinary::Op::CompareLt: { if (normLeft && normLeft->shouldSuppressErrors()) return builtinTypes->numberType; if (normLeft && normLeft->isExactlyNumber()) { reportErrors(tryUnify(scope, expr->right->location, rightType, builtinTypes->numberType)); return builtinTypes->numberType; } else if (normLeft && normLeft->isSubtypeOfString()) { reportErrors(tryUnify(scope, expr->right->location, rightType, builtinTypes->stringType)); return builtinTypes->stringType; } else { reportError(GenericError{format("Types '%s' and '%s' cannot be compared with relational operator %s", toString(leftType).c_str(), toString(rightType).c_str(), toString(expr->op).c_str())}, expr->location); return builtinTypes->errorRecoveryType(); } } case AstExprBinary::Op::And: case AstExprBinary::Op::Or: case AstExprBinary::Op::CompareEq: case AstExprBinary::Op::CompareNe: // Ugly case: we don't care about this possibility, because a // compound assignment will never exist with one of these operators. return builtinTypes->anyType; default: // Unhandled AstExprBinary::Op possibility. LUAU_ASSERT(false); return builtinTypes->errorRecoveryType(); } } void visit(AstExprTypeAssertion* expr) { visit(expr->expr, ValueContext::RValue); visit(expr->annotation); TypeId annotationType = lookupAnnotation(expr->annotation); TypeId computedType = lookupType(expr->expr); // Note: As an optimization, we try 'number <: number | string' first, as that is the more likely case. if (isSubtype(annotationType, computedType, stack.back(), true)) return; if (isSubtype(computedType, annotationType, stack.back(), true)) return; reportError(TypesAreUnrelated{computedType, annotationType}, expr->location); } void visit(AstExprIfElse* expr) { // TODO! visit(expr->condition, ValueContext::RValue); visit(expr->trueExpr, ValueContext::RValue); visit(expr->falseExpr, ValueContext::RValue); } void visit(AstExprInterpString* interpString) { for (AstExpr* expr : interpString->expressions) visit(expr, ValueContext::RValue); } void visit(AstExprError* expr) { // TODO! for (AstExpr* e : expr->expressions) visit(e, ValueContext::RValue); } /** Extract a TypeId for the first type of the provided pack. * * Note that this may require modifying some types. I hope this doesn't cause problems! */ TypeId flattenPack(TypePackId pack) { pack = follow(pack); if (auto fst = first(pack, /*ignoreHiddenVariadics*/ false)) return *fst; else if (auto ftp = get(pack)) { TypeId result = testArena.addType(FreeType{ftp->scope}); TypePackId freeTail = testArena.addTypePack(FreeTypePack{ftp->scope}); TypePack& resultPack = asMutable(pack)->ty.emplace(); resultPack.head.assign(1, result); resultPack.tail = freeTail; return result; } else if (get(pack)) return builtinTypes->errorRecoveryType(); else if (finite(pack) && size(pack) == 0) return builtinTypes->nilType; // `(f())` where `f()` returns no values is coerced into `nil` else ice->ice("flattenPack got a weird pack!"); } void visitGenerics(AstArray generics, AstArray genericPacks) { DenseHashSet seen{AstName{}}; for (const auto& g : generics) { if (seen.contains(g.name)) reportError(DuplicateGenericParameter{g.name.value}, g.location); else seen.insert(g.name); if (g.defaultValue) visit(g.defaultValue); } for (const auto& g : genericPacks) { if (seen.contains(g.name)) reportError(DuplicateGenericParameter{g.name.value}, g.location); else seen.insert(g.name); if (g.defaultValue) visit(g.defaultValue); } } void visit(AstType* ty) { TypeId* resolvedTy = module->astResolvedTypes.find(ty); if (resolvedTy) checkForFamilyInhabitance(follow(*resolvedTy), ty->location); if (auto t = ty->as()) return visit(t); else if (auto t = ty->as()) return visit(t); else if (auto t = ty->as()) return visit(t); else if (auto t = ty->as()) return visit(t); else if (auto t = ty->as()) return visit(t); else if (auto t = ty->as()) return visit(t); } void visit(AstTypeReference* ty) { // No further validation is necessary in this case. The main logic for // _luau_print is contained in lookupAnnotation. if (FFlag::DebugLuauMagicTypes && ty->name == "_luau_print") return; for (const AstTypeOrPack& param : ty->parameters) { if (param.type) visit(param.type); else visit(param.typePack); } Scope* scope = findInnermostScope(ty->location); LUAU_ASSERT(scope); std::optional alias = (ty->prefix) ? scope->lookupImportedType(ty->prefix->value, ty->name.value) : scope->lookupType(ty->name.value); if (alias.has_value()) { size_t typesRequired = alias->typeParams.size(); size_t packsRequired = alias->typePackParams.size(); bool hasDefaultTypes = std::any_of(alias->typeParams.begin(), alias->typeParams.end(), [](auto&& el) { return el.defaultValue.has_value(); }); bool hasDefaultPacks = std::any_of(alias->typePackParams.begin(), alias->typePackParams.end(), [](auto&& el) { return el.defaultValue.has_value(); }); if (!ty->hasParameterList) { if ((!alias->typeParams.empty() && !hasDefaultTypes) || (!alias->typePackParams.empty() && !hasDefaultPacks)) { reportError(GenericError{"Type parameter list is required"}, ty->location); } } size_t typesProvided = 0; size_t extraTypes = 0; size_t packsProvided = 0; for (const AstTypeOrPack& p : ty->parameters) { if (p.type) { if (packsProvided != 0) { reportError(GenericError{"Type parameters must come before type pack parameters"}, ty->location); continue; } if (typesProvided < typesRequired) { typesProvided += 1; } else { extraTypes += 1; } } else if (p.typePack) { TypePackId tp = lookupPackAnnotation(p.typePack); if (typesProvided < typesRequired && size(tp) == 1 && finite(tp) && first(tp)) { typesProvided += 1; } else { packsProvided += 1; } } } if (extraTypes != 0 && packsProvided == 0) { // Extra types are only collected into a pack if a pack is expected if (packsRequired != 0) packsProvided += 1; else typesProvided += extraTypes; } for (size_t i = typesProvided; i < typesRequired; ++i) { if (alias->typeParams[i].defaultValue) { typesProvided += 1; } } for (size_t i = packsProvided; i < packsRequired; ++i) { if (alias->typePackParams[i].defaultValue) { packsProvided += 1; } } if (extraTypes == 0 && packsProvided + 1 == packsRequired) { packsProvided += 1; } if (typesProvided != typesRequired || packsProvided != packsRequired) { reportError(IncorrectGenericParameterCount{ /* name */ ty->name.value, /* typeFun */ *alias, /* actualParameters */ typesProvided, /* actualPackParameters */ packsProvided, }, ty->location); } } else { if (scope->lookupPack(ty->name.value)) { reportError( SwappedGenericTypeParameter{ ty->name.value, SwappedGenericTypeParameter::Kind::Type, }, ty->location); } else { std::string symbol = ""; if (ty->prefix) { symbol += (*(ty->prefix)).value; symbol += "."; } symbol += ty->name.value; reportError(UnknownSymbol{symbol, UnknownSymbol::Context::Type}, ty->location); } } } void visit(AstTypeTable* table) { // TODO! for (const AstTableProp& prop : table->props) visit(prop.type); if (table->indexer) { visit(table->indexer->indexType); visit(table->indexer->resultType); } } void visit(AstTypeFunction* ty) { visitGenerics(ty->generics, ty->genericPacks); visit(ty->argTypes); visit(ty->returnTypes); } void visit(AstTypeTypeof* ty) { visit(ty->expr, ValueContext::RValue); } void visit(AstTypeUnion* ty) { // TODO! for (AstType* type : ty->types) visit(type); } void visit(AstTypeIntersection* ty) { // TODO! for (AstType* type : ty->types) visit(type); } void visit(AstTypePack* pack) { if (auto p = pack->as()) return visit(p); else if (auto p = pack->as()) return visit(p); else if (auto p = pack->as()) return visit(p); } void visit(AstTypePackExplicit* tp) { // TODO! for (AstType* type : tp->typeList.types) visit(type); if (tp->typeList.tailType) visit(tp->typeList.tailType); } void visit(AstTypePackVariadic* tp) { // TODO! visit(tp->variadicType); } void visit(AstTypePackGeneric* tp) { Scope* scope = findInnermostScope(tp->location); LUAU_ASSERT(scope); std::optional alias = scope->lookupPack(tp->genericName.value); if (!alias.has_value()) { if (scope->lookupType(tp->genericName.value)) { reportError( SwappedGenericTypeParameter{ tp->genericName.value, SwappedGenericTypeParameter::Kind::Pack, }, tp->location); } else { reportError(UnknownSymbol{tp->genericName.value, UnknownSymbol::Context::Type}, tp->location); } } } template bool isSubtype(TID subTy, TID superTy, NotNull scope, bool genericsOkay = false) { TypeArena arena; Unifier u{NotNull{&normalizer}, scope, Location{}, Covariant}; u.hideousFixMeGenericsAreActuallyFree = genericsOkay; u.enableNewSolver(); u.tryUnify(subTy, superTy); const bool ok = u.errors.empty() && u.log.empty(); return ok; } template ErrorVec tryUnify(NotNull scope, const Location& location, TID subTy, TID superTy, CountMismatch::Context context = CountMismatch::Arg, bool genericsOkay = false) { Unifier u{NotNull{&normalizer}, scope, location, Covariant}; u.ctx = context; u.hideousFixMeGenericsAreActuallyFree = genericsOkay; u.enableNewSolver(); u.tryUnify(subTy, superTy); if (isErrorSuppressing(location, subTy, location, superTy)) return {}; return std::move(u.errors); } void reportError(TypeErrorData data, const Location& location) { if (auto utk = get_if(&data)) diagnoseMissingTableKey(utk, data); module->errors.emplace_back(location, module->name, std::move(data)); if (logger) logger->captureTypeCheckError(module->errors.back()); } void reportError(TypeError e) { reportError(std::move(e.data), e.location); } void reportErrors(ErrorVec errors) { for (TypeError e : errors) reportError(std::move(e)); } // If the provided type does not have the named property, report an error. void checkIndexTypeFromType(TypeId tableTy, const std::string& prop, const Location& location, ValueContext context, TypeId astIndexExprType) { const NormalizedType* norm = normalizer.normalize(tableTy); if (!norm) { reportError(NormalizationTooComplex{}, location); return; } // if the type is error suppressing, we don't actually have any work left to do. if (norm->shouldSuppressErrors()) return; bool foundOneProp = false; std::vector typesMissingTheProp; auto fetch = [&](TypeId ty) { if (!normalizer.isInhabited(ty)) return; std::unordered_set seen; bool found = hasIndexTypeFromType(ty, prop, location, seen, astIndexExprType); foundOneProp |= found; if (!found) typesMissingTheProp.push_back(ty); }; fetch(norm->tops); fetch(norm->booleans); for (const auto& [ty, _negations] : norm->classes.classes) { fetch(ty); } fetch(norm->errors); fetch(norm->nils); fetch(norm->numbers); if (!norm->strings.isNever()) fetch(builtinTypes->stringType); fetch(norm->threads); for (TypeId ty : norm->tables) fetch(ty); if (norm->functions.isTop) fetch(builtinTypes->functionType); else if (!norm->functions.isNever()) { if (norm->functions.parts.size() == 1) fetch(norm->functions.parts.front()); else { std::vector parts; parts.insert(parts.end(), norm->functions.parts.begin(), norm->functions.parts.end()); fetch(testArena.addType(IntersectionType{std::move(parts)})); } } for (const auto& [tyvar, intersect] : norm->tyvars) { if (get(intersect->tops)) { TypeId ty = normalizer.typeFromNormal(*intersect); fetch(testArena.addType(IntersectionType{{tyvar, ty}})); } else fetch(tyvar); } if (!typesMissingTheProp.empty()) { if (foundOneProp) reportError(MissingUnionProperty{tableTy, typesMissingTheProp, prop}, location); // For class LValues, we don't want to report an extension error, // because classes come into being with full knowledge of their // shape. We instead want to report the unknown property error of // the `else` branch. else if (context == ValueContext::LValue && !get(tableTy)) reportError(CannotExtendTable{tableTy, CannotExtendTable::Property, prop}, location); else reportError(UnknownProperty{tableTy, prop}, location); } } bool hasIndexTypeFromType(TypeId ty, const std::string& prop, const Location& location, std::unordered_set& seen, TypeId astIndexExprType) { // If we have already encountered this type, we must assume that some // other codepath will do the right thing and signal false if the // property is not present. const bool isUnseen = seen.insert(ty).second; if (!isUnseen) return true; if (get(ty) || get(ty) || get(ty)) return true; if (isString(ty)) { std::optional mtIndex = Luau::findMetatableEntry(builtinTypes, module->errors, builtinTypes->stringType, "__index", location); LUAU_ASSERT(mtIndex); ty = *mtIndex; } if (auto tt = getTableType(ty)) { if (findTablePropertyRespectingMeta(builtinTypes, module->errors, ty, prop, location)) return true; if (tt->indexer) { TypeId indexType = follow(tt->indexer->indexType); if (isPrim(indexType, PrimitiveType::String)) return true; // If the indexer looks like { [any] : _} - the prop lookup should be allowed! else if (get(indexType) || get(indexType)) return true; } return false; } else if (const ClassType* cls = get(ty)) { // If the property doesn't exist on the class, we consult the indexer // We need to check if the type of the index expression foo (x[foo]) // is compatible with the indexer's indexType // Construct the intersection and test inhabitedness! if (auto property = lookupClassProp(cls, prop)) return true; if (cls->indexer) { TypeId inhabitatedTestType = testArena.addType(IntersectionType{{cls->indexer->indexType, astIndexExprType}}); return normalizer.isInhabited(inhabitatedTestType); } return false; } else if (const UnionType* utv = get(ty)) return std::all_of(begin(utv), end(utv), [&](TypeId part) { return hasIndexTypeFromType(part, prop, location, seen, astIndexExprType); }); else if (const IntersectionType* itv = get(ty)) return std::any_of(begin(itv), end(itv), [&](TypeId part) { return hasIndexTypeFromType(part, prop, location, seen, astIndexExprType); }); else return false; } void diagnoseMissingTableKey(UnknownProperty* utk, TypeErrorData& data) const { std::string_view sv(utk->key); std::set candidates; auto accumulate = [&](const TableType::Props& props) { for (const auto& [name, ty] : props) { if (sv != name && equalsLower(sv, name)) candidates.insert(name); } }; if (auto ttv = getTableType(utk->table)) accumulate(ttv->props); else if (auto ctv = get(follow(utk->table))) { while (ctv) { accumulate(ctv->props); if (!ctv->parent) break; ctv = get(*ctv->parent); LUAU_ASSERT(ctv); } } if (!candidates.empty()) data = TypeErrorData(UnknownPropButFoundLikeProp{utk->table, utk->key, candidates}); } bool isErrorSuppressing(Location loc, TypeId ty) { switch (shouldSuppressErrors(NotNull{&normalizer}, ty)) { case ErrorSuppression::DoNotSuppress: return false; case ErrorSuppression::Suppress: return true; case ErrorSuppression::NormalizationFailed: reportError(NormalizationTooComplex{}, loc); return false; }; LUAU_ASSERT(false); return false; // UNREACHABLE } bool isErrorSuppressing(Location loc1, TypeId ty1, Location loc2, TypeId ty2) { return isErrorSuppressing(loc1, ty1) || isErrorSuppressing(loc2, ty2); } bool isErrorSuppressing(Location loc, TypePackId tp) { switch (shouldSuppressErrors(NotNull{&normalizer}, tp)) { case ErrorSuppression::DoNotSuppress: return false; case ErrorSuppression::Suppress: return true; case ErrorSuppression::NormalizationFailed: reportError(NormalizationTooComplex{}, loc); return false; }; LUAU_ASSERT(false); return false; // UNREACHABLE } bool isErrorSuppressing(Location loc1, TypePackId tp1, Location loc2, TypePackId tp2) { return isErrorSuppressing(loc1, tp1) || isErrorSuppressing(loc2, tp2); } }; void check( NotNull builtinTypes, NotNull unifierState, DcrLogger* logger, const SourceModule& sourceModule, Module* module) { TypeChecker2 typeChecker{builtinTypes, unifierState, logger, &sourceModule, module}; typeChecker.visit(sourceModule.root); unfreeze(module->interfaceTypes); copyErrors(module->errors, module->interfaceTypes); freeze(module->interfaceTypes); } } // namespace Luau