module Properties.Equality where open import Agda.Builtin.Equality using (_≡_; refl) open import Properties.Contradiction using (¬) sym : ∀ {A : Set} {a b : A} → (a ≡ b) → (b ≡ a) sym refl = refl trans : ∀ {A : Set} {a b c : A} → (a ≡ b) → (b ≡ c) → (a ≡ c) trans refl refl = refl cong : ∀ {A B : Set} {a b : A} (f : A → B) → (a ≡ b) → (f a ≡ f b) cong f refl = refl _≢_ : ∀ {A : Set} → A → A → Set (a ≢ b) = ¬(a ≡ b)