// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details // This code is based on Lua 5.x implementation licensed under MIT License; see lua_LICENSE.txt for details #pragma once #include "lobject.h" #include "ltm.h" /* table of globals */ #define gt(L) (&L->l_gt) /* registry */ #define registry(L) (&L->global->registry) /* extra stack space to handle TM calls and some other extras */ #define EXTRA_STACK 5 #define BASIC_CI_SIZE 8 #define BASIC_STACK_SIZE (2 * LUA_MINSTACK) // clang-format off typedef struct stringtable { GCObject** hash; uint32_t nuse; /* number of elements */ int size; } stringtable; // clang-format on /* ** informations about a call ** ** the general Lua stack frame structure is as follows: ** - each function gets a stack frame, with function "registers" being stack slots on the frame ** - function arguments are associated with registers 0+ ** - function locals and temporaries follow after; usually locals are a consecutive block per scope, and temporaries are allocated after this, but *this is up to the compiler ** ** when function doesn't have varargs, the stack layout is as follows: ** ^ (func) ^^ [fixed args] [locals + temporaries] ** where ^ is the 'func' pointer in CallInfo struct, and ^^ is the 'base' pointer (which is what registers are relative to) ** ** when function *does* have varargs, the stack layout is more complex - the runtime has to copy the fixed arguments so that the 0+ addressing still *works as follows: ** ^ (func) [fixed args] [varargs] ^^ [fixed args] [locals + temporaries] ** ** computing the sizes of these individual blocks works as follows: ** - the number of fixed args is always matching the `numparams` in a function's Proto object; runtime adds `nil` during the call execution as *necessary ** - the number of variadic args can be computed by evaluating (ci->base - ci->func - 1 - numparams) ** ** the CallInfo structures are allocated as an array, with each subsequent call being *appended* to this array (so if f calls g, CallInfo for g *immediately follows CallInfo for f) ** the `nresults` field in CallInfo is set by the caller to tell the function how many arguments the caller is expecting on the stack after the *function returns ** the `flags` field in CallInfo contains internal execution flags that are important for pcall/etc, see LUA_CALLINFO_* */ // clang-format off typedef struct CallInfo { StkId base; /* base for this function */ StkId func; /* function index in the stack */ StkId top; /* top for this function */ const Instruction* savedpc; int nresults; /* expected number of results from this function */ unsigned int flags; /* call frame flags, see LUA_CALLINFO_* */ } CallInfo; // clang-format on #define LUA_CALLINFO_RETURN (1 << 0) /* should the interpreter return after returning from this callinfo? first frame must have this set */ #define LUA_CALLINFO_HANDLE (1 << 1) /* should the error thrown during execution get handled by continuation from this callinfo? func must be C */ #define curr_func(L) (clvalue(L->ci->func)) #define ci_func(ci) (clvalue((ci)->func)) #define f_isLua(ci) (!ci_func(ci)->isC) #define isLua(ci) (ttisfunction((ci)->func) && f_isLua(ci)) struct GCCycleStats { size_t heapgoalsizebytes = 0; size_t heaptriggersizebytes = 0; double waittime = 0.0; // time from end of the last cycle to the start of a new one double starttimestamp = 0.0; double endtimestamp = 0.0; double marktime = 0.0; double atomicstarttimestamp = 0.0; size_t atomicstarttotalsizebytes = 0; double atomictime = 0.0; double sweeptime = 0.0; size_t markitems = 0; size_t sweepitems = 0; size_t assistwork = 0; size_t explicitwork = 0; size_t endtotalsizebytes = 0; }; // data for proportional-integral controller of heap trigger value struct GCHeapTriggerStats { static const unsigned termcount = 32; int32_t terms[termcount] = {0}; uint32_t termpos = 0; int32_t integral = 0; }; struct GCStats { double stepexplicittimeacc = 0.0; double stepassisttimeacc = 0.0; // when cycle is completed, last cycle values are updated uint64_t completedcycles = 0; GCCycleStats lastcycle; GCCycleStats currcycle; // only step count and their time is accumulated GCCycleStats cyclestatsacc; GCHeapTriggerStats triggerstats; }; /* ** `global state', shared by all threads of this state */ // clang-format off typedef struct global_State { stringtable strt; /* hash table for strings */ lua_Alloc frealloc; /* function to reallocate memory */ void* ud; /* auxiliary data to `frealloc' */ uint8_t currentwhite; uint8_t gcstate; /* state of garbage collector */ int sweepstrgc; /* position of sweep in `strt' */ GCObject* rootgc; /* list of all collectable objects */ GCObject** sweepgc; /* position of sweep in `rootgc' */ GCObject* gray; /* list of gray objects */ GCObject* grayagain; /* list of objects to be traversed atomically */ GCObject* weak; /* list of weak tables (to be cleared) */ GCObject* strbufgc; // list of all string buffer objects size_t GCthreshold; // when totalbytes > GCthreshold; run GC step size_t totalbytes; // number of bytes currently allocated int gcgoal; // see LUAI_GCGOAL int gcstepmul; // see LUAI_GCSTEPMUL int gcstepsize; // see LUAI_GCSTEPSIZE struct lua_Page* freepages[LUA_SIZECLASSES]; /* free page linked list for each size class */ size_t memcatbytes[LUA_MEMORY_CATEGORIES]; /* total amount of memory used by each memory category */ struct lua_State* mainthread; UpVal uvhead; /* head of double-linked list of all open upvalues */ struct Table* mt[LUA_T_COUNT]; /* metatables for basic types */ TString* ttname[LUA_T_COUNT]; /* names for basic types */ TString* tmname[TM_N]; /* array with tag-method names */ TValue registry; /* registry table, used by lua_ref and LUA_REGISTRYINDEX */ int registryfree; /* next free slot in registry */ struct lua_jmpbuf* errorjmp; /* jump buffer data for longjmp-style error handling */ uint64_t rngstate; /* PCG random number generator state */ uint64_t ptrenckey[4]; /* pointer encoding key for display */ void (*udatagc[LUA_UTAG_LIMIT])(void*); /* for each userdata tag, a gc callback to be called immediately before freeing memory */ lua_Callbacks cb; GCStats gcstats; } global_State; // clang-format on /* ** `per thread' state */ // clang-format off struct lua_State { CommonHeader; uint8_t status; uint8_t activememcat; /* memory category that is used for new GC object allocations */ uint8_t stackstate; bool singlestep; /* call debugstep hook after each instruction */ StkId top; /* first free slot in the stack */ StkId base; /* base of current function */ global_State* global; CallInfo* ci; /* call info for current function */ StkId stack_last; /* last free slot in the stack */ StkId stack; /* stack base */ CallInfo* end_ci; /* points after end of ci array*/ CallInfo* base_ci; /* array of CallInfo's */ int stacksize; int size_ci; /* size of array `base_ci' */ unsigned short nCcalls; /* number of nested C calls */ unsigned short baseCcalls; /* nested C calls when resuming coroutine */ int cachedslot; /* when table operations or INDEX/NEWINDEX is invoked from Luau, what is the expected slot for lookup? */ TValue l_gt; /* table of globals */ TValue env; /* temporary place for environments */ GCObject* openupval; /* list of open upvalues in this stack */ GCObject* gclist; TString* namecall; /* when invoked from Luau using NAMECALL, what method do we need to invoke? */ void* userdata; }; // clang-format on /* ** Union of all collectible objects */ union GCObject { GCheader gch; struct TString ts; struct Udata u; struct Closure cl; struct Table h; struct Proto p; struct UpVal uv; struct lua_State th; /* thread */ }; /* macros to convert a GCObject into a specific value */ #define gco2ts(o) check_exp((o)->gch.tt == LUA_TSTRING, &((o)->ts)) #define gco2u(o) check_exp((o)->gch.tt == LUA_TUSERDATA, &((o)->u)) #define gco2cl(o) check_exp((o)->gch.tt == LUA_TFUNCTION, &((o)->cl)) #define gco2h(o) check_exp((o)->gch.tt == LUA_TTABLE, &((o)->h)) #define gco2p(o) check_exp((o)->gch.tt == LUA_TPROTO, &((o)->p)) #define gco2uv(o) check_exp((o)->gch.tt == LUA_TUPVAL, &((o)->uv)) #define gco2th(o) check_exp((o)->gch.tt == LUA_TTHREAD, &((o)->th)) /* macro to convert any Lua object into a GCObject */ #define obj2gco(v) check_exp(iscollectable(v), cast_to(GCObject*, (v) + 0)) LUAI_FUNC lua_State* luaE_newthread(lua_State* L); LUAI_FUNC void luaE_freethread(lua_State* L, lua_State* L1);