// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details #include "Luau/OptimizeConstProp.h" #include "Luau/DenseHash.h" #include "Luau/IrAnalysis.h" #include "Luau/IrBuilder.h" #include "Luau/IrUtils.h" #include "lua.h" #include #include LUAU_FASTINTVARIABLE(LuauCodeGenMinLinearBlockPath, 3) namespace Luau { namespace CodeGen { // Data we know about the register value struct RegisterInfo { uint8_t tag = 0xff; IrOp value; // Used to quickly invalidate links between SSA values and register memory // It's a bit imprecise where value and tag both always invalidate together uint32_t version = 0; bool knownNotReadonly = false; bool knownNoMetatable = false; }; // Load instructions are linked to target register to carry knowledge about the target // We track a register version at the point of the load so it's easy to break the link when register is updated struct RegisterLink { uint8_t reg = 0; uint32_t version = 0; }; // Data we know about the current VM state struct ConstPropState { ConstPropState(IrFunction& function) : function(function) , valueMap({}) { } uint8_t tryGetTag(IrOp op) { if (RegisterInfo* info = tryGetRegisterInfo(op)) return info->tag; return 0xff; } void saveTag(IrOp op, uint8_t tag) { if (RegisterInfo* info = tryGetRegisterInfo(op)) { if (info->tag != tag) { info->tag = tag; info->version++; } } } IrOp tryGetValue(IrOp op) { if (RegisterInfo* info = tryGetRegisterInfo(op)) return info->value; return IrOp{IrOpKind::None, 0u}; } void saveValue(IrOp op, IrOp value) { LUAU_ASSERT(value.kind == IrOpKind::Constant); if (RegisterInfo* info = tryGetRegisterInfo(op)) { if (info->value != value) { info->value = value; info->knownNotReadonly = false; info->knownNoMetatable = false; info->version++; } } } void invalidate(RegisterInfo& reg, bool invalidateTag, bool invalidateValue) { if (invalidateTag) { reg.tag = 0xff; } if (invalidateValue) { reg.value = {}; reg.knownNotReadonly = false; reg.knownNoMetatable = false; } reg.version++; } void invalidateTag(IrOp regOp) { // TODO: use maxstacksize from Proto maxReg = vmRegOp(regOp) > maxReg ? vmRegOp(regOp) : maxReg; invalidate(regs[vmRegOp(regOp)], /* invalidateTag */ true, /* invalidateValue */ false); } void invalidateValue(IrOp regOp) { // TODO: use maxstacksize from Proto maxReg = vmRegOp(regOp) > maxReg ? vmRegOp(regOp) : maxReg; invalidate(regs[vmRegOp(regOp)], /* invalidateTag */ false, /* invalidateValue */ true); } void invalidate(IrOp regOp) { // TODO: use maxstacksize from Proto maxReg = vmRegOp(regOp) > maxReg ? vmRegOp(regOp) : maxReg; invalidate(regs[vmRegOp(regOp)], /* invalidateTag */ true, /* invalidateValue */ true); } void invalidateRegistersFrom(int firstReg) { for (int i = firstReg; i <= maxReg; ++i) invalidate(regs[i], /* invalidateTag */ true, /* invalidateValue */ true); } void invalidateRegisterRange(int firstReg, int count) { for (int i = firstReg; i < firstReg + count && i <= maxReg; ++i) invalidate(regs[i], /* invalidateTag */ true, /* invalidateValue */ true); } void invalidateCapturedRegisters() { for (int i = 0; i <= maxReg; ++i) { if (function.cfg.captured.regs.test(i)) invalidate(regs[i], /* invalidateTag */ true, /* invalidateValue */ true); } } void invalidateHeap() { for (int i = 0; i <= maxReg; ++i) invalidateHeap(regs[i]); } void invalidateHeap(RegisterInfo& reg) { reg.knownNotReadonly = false; reg.knownNoMetatable = false; } void invalidateUserCall() { invalidateHeap(); invalidateCapturedRegisters(); inSafeEnv = false; } void createRegLink(uint32_t instIdx, IrOp regOp) { LUAU_ASSERT(!instLink.contains(instIdx)); instLink[instIdx] = RegisterLink{uint8_t(vmRegOp(regOp)), regs[vmRegOp(regOp)].version}; } RegisterInfo* tryGetRegisterInfo(IrOp op) { if (op.kind == IrOpKind::VmReg) { maxReg = vmRegOp(op) > maxReg ? vmRegOp(op) : maxReg; return ®s[vmRegOp(op)]; } if (RegisterLink* link = tryGetRegLink(op)) { maxReg = int(link->reg) > maxReg ? int(link->reg) : maxReg; return ®s[link->reg]; } return nullptr; } RegisterLink* tryGetRegLink(IrOp instOp) { if (instOp.kind != IrOpKind::Inst) return nullptr; if (RegisterLink* link = instLink.find(instOp.index)) { // Check that the target register hasn't changed the value if (link->version > regs[link->reg].version) return nullptr; return link; } return nullptr; } // Attach register version number to the register operand in a load instruction // This is used to allow instructions with register references to be compared for equality IrInst versionedVmRegLoad(IrCmd loadCmd, IrOp op) { LUAU_ASSERT(op.kind == IrOpKind::VmReg); uint32_t version = regs[vmRegOp(op)].version; LUAU_ASSERT(version <= 0xffffff); op.index = vmRegOp(op) | (version << 8); return IrInst{loadCmd, op}; } // Find existing value of the instruction that is exactly the same, or record current on for future lookups void substituteOrRecord(IrInst& inst, uint32_t instIdx) { if (!useValueNumbering) return; if (uint32_t* prevIdx = valueMap.find(inst)) substitute(function, inst, IrOp{IrOpKind::Inst, *prevIdx}); else valueMap[inst] = instIdx; } // Vm register load can be replaced by a previous load of the same version of the register // If there is no previous load, we record the current one for future lookups void substituteOrRecordVmRegLoad(IrInst& loadInst) { LUAU_ASSERT(loadInst.a.kind == IrOpKind::VmReg); if (!useValueNumbering) return; // To avoid captured register invalidation tracking in lowering later, values from loads from captured registers are not propagated // This prevents the case where load value location is linked to memory in case of a spill and is then cloberred in a user call if (function.cfg.captured.regs.test(vmRegOp(loadInst.a))) return; IrInst versionedLoad = versionedVmRegLoad(loadInst.cmd, loadInst.a); // Check if there is a value that already has this version of the register if (uint32_t* prevIdx = valueMap.find(versionedLoad)) { // Previous value might not be linked to a register yet // For example, it could be a NEW_TABLE stored into a register and we might need to track guards made with this value if (!instLink.contains(*prevIdx)) createRegLink(*prevIdx, loadInst.a); // Substitute load instructon with the previous value substitute(function, loadInst, IrOp{IrOpKind::Inst, *prevIdx}); } else { uint32_t instIdx = function.getInstIndex(loadInst); // Record load of this register version for future substitution valueMap[versionedLoad] = instIdx; createRegLink(instIdx, loadInst.a); } } // VM register loads can use the value that was stored in the same Vm register earlier void forwardVmRegStoreToLoad(const IrInst& storeInst, IrCmd loadCmd) { LUAU_ASSERT(storeInst.a.kind == IrOpKind::VmReg); LUAU_ASSERT(storeInst.b.kind == IrOpKind::Inst); if (!useValueNumbering) return; // To avoid captured register invalidation tracking in lowering later, values from stores into captured registers are not propagated // This prevents the case where store creates an alternative value location in case of a spill and is then cloberred in a user call if (function.cfg.captured.regs.test(vmRegOp(storeInst.a))) return; // Future loads of this register version can use the value we stored valueMap[versionedVmRegLoad(loadCmd, storeInst.a)] = storeInst.b.index; } void clear() { for (int i = 0; i <= maxReg; ++i) regs[i] = RegisterInfo(); maxReg = 0; inSafeEnv = false; checkedGc = false; instLink.clear(); valueMap.clear(); } IrFunction& function; bool useValueNumbering = false; std::array regs; // For range/full invalidations, we only want to visit a limited number of data that we have recorded int maxReg = 0; bool inSafeEnv = false; bool checkedGc = false; DenseHashMap instLink{~0u}; DenseHashMap valueMap; }; static void handleBuiltinEffects(ConstPropState& state, LuauBuiltinFunction bfid, uint32_t firstReturnReg, int nresults) { // Switch over all values is used to force new items to be handled switch (bfid) { case LBF_NONE: case LBF_ASSERT: case LBF_MATH_ABS: case LBF_MATH_ACOS: case LBF_MATH_ASIN: case LBF_MATH_ATAN2: case LBF_MATH_ATAN: case LBF_MATH_CEIL: case LBF_MATH_COSH: case LBF_MATH_COS: case LBF_MATH_DEG: case LBF_MATH_EXP: case LBF_MATH_FLOOR: case LBF_MATH_FMOD: case LBF_MATH_FREXP: case LBF_MATH_LDEXP: case LBF_MATH_LOG10: case LBF_MATH_LOG: case LBF_MATH_MAX: case LBF_MATH_MIN: case LBF_MATH_MODF: case LBF_MATH_POW: case LBF_MATH_RAD: case LBF_MATH_SINH: case LBF_MATH_SIN: case LBF_MATH_SQRT: case LBF_MATH_TANH: case LBF_MATH_TAN: case LBF_BIT32_ARSHIFT: case LBF_BIT32_BAND: case LBF_BIT32_BNOT: case LBF_BIT32_BOR: case LBF_BIT32_BXOR: case LBF_BIT32_BTEST: case LBF_BIT32_EXTRACT: case LBF_BIT32_LROTATE: case LBF_BIT32_LSHIFT: case LBF_BIT32_REPLACE: case LBF_BIT32_RROTATE: case LBF_BIT32_RSHIFT: case LBF_TYPE: case LBF_STRING_BYTE: case LBF_STRING_CHAR: case LBF_STRING_LEN: case LBF_TYPEOF: case LBF_STRING_SUB: case LBF_MATH_CLAMP: case LBF_MATH_SIGN: case LBF_MATH_ROUND: case LBF_RAWSET: case LBF_RAWGET: case LBF_RAWEQUAL: case LBF_TABLE_INSERT: case LBF_TABLE_UNPACK: case LBF_VECTOR: case LBF_BIT32_COUNTLZ: case LBF_BIT32_COUNTRZ: case LBF_SELECT_VARARG: case LBF_RAWLEN: case LBF_BIT32_EXTRACTK: case LBF_GETMETATABLE: break; case LBF_SETMETATABLE: state.invalidateHeap(); // TODO: only knownNoMetatable is affected and we might know which one break; } // TODO: classify further using switch above, some fastcalls only modify the value, not the tag // TODO: fastcalls are different from calls and it might be possible to not invalidate all register starting from return state.invalidateRegistersFrom(firstReturnReg); } static void constPropInInst(ConstPropState& state, IrBuilder& build, IrFunction& function, IrBlock& block, IrInst& inst, uint32_t index) { switch (inst.cmd) { case IrCmd::LOAD_TAG: if (uint8_t tag = state.tryGetTag(inst.a); tag != 0xff) substitute(function, inst, build.constTag(tag)); else if (inst.a.kind == IrOpKind::VmReg) state.createRegLink(index, inst.a); break; case IrCmd::LOAD_POINTER: if (inst.a.kind == IrOpKind::VmReg) state.substituteOrRecordVmRegLoad(inst); break; case IrCmd::LOAD_DOUBLE: if (IrOp value = state.tryGetValue(inst.a); value.kind == IrOpKind::Constant) substitute(function, inst, value); else if (inst.a.kind == IrOpKind::VmReg) state.substituteOrRecordVmRegLoad(inst); break; case IrCmd::LOAD_INT: if (IrOp value = state.tryGetValue(inst.a); value.kind == IrOpKind::Constant) substitute(function, inst, value); else if (inst.a.kind == IrOpKind::VmReg) state.substituteOrRecordVmRegLoad(inst); break; case IrCmd::LOAD_TVALUE: if (inst.a.kind == IrOpKind::VmReg) state.substituteOrRecordVmRegLoad(inst); break; case IrCmd::STORE_TAG: if (inst.a.kind == IrOpKind::VmReg) { const IrOp source = inst.a; uint32_t activeLoadDoubleValue = kInvalidInstIdx; if (inst.b.kind == IrOpKind::Constant) { uint8_t value = function.tagOp(inst.b); // STORE_TAG usually follows a store of the value, but it also bumps the version of the whole register // To be able to propagate STORE_DOUBLE into LOAD_DOUBLE, we find active LOAD_DOUBLE value and recreate it with updated version // Register in this optimization cannot be captured to avoid complications in lowering (IrValueLocationTracking doesn't model it) // If stored tag is not a number, we can skip the lookup as there won't be future loads of this register as a number if (value == LUA_TNUMBER && !function.cfg.captured.regs.test(vmRegOp(source))) { if (uint32_t* prevIdx = state.valueMap.find(state.versionedVmRegLoad(IrCmd::LOAD_DOUBLE, source))) activeLoadDoubleValue = *prevIdx; } if (state.tryGetTag(source) == value) kill(function, inst); else state.saveTag(source, value); } else { state.invalidateTag(source); } // Future LOAD_DOUBLE instructions can re-use previous register version load if (activeLoadDoubleValue != kInvalidInstIdx) state.valueMap[state.versionedVmRegLoad(IrCmd::LOAD_DOUBLE, source)] = activeLoadDoubleValue; } break; case IrCmd::STORE_POINTER: if (inst.a.kind == IrOpKind::VmReg) { state.invalidateValue(inst.a); state.forwardVmRegStoreToLoad(inst, IrCmd::LOAD_POINTER); } break; case IrCmd::STORE_DOUBLE: if (inst.a.kind == IrOpKind::VmReg) { if (inst.b.kind == IrOpKind::Constant) { if (state.tryGetValue(inst.a) == inst.b) kill(function, inst); else state.saveValue(inst.a, inst.b); } else { state.invalidateValue(inst.a); state.forwardVmRegStoreToLoad(inst, IrCmd::LOAD_DOUBLE); } } break; case IrCmd::STORE_INT: if (inst.a.kind == IrOpKind::VmReg) { if (inst.b.kind == IrOpKind::Constant) { if (state.tryGetValue(inst.a) == inst.b) kill(function, inst); else state.saveValue(inst.a, inst.b); } else { state.invalidateValue(inst.a); state.forwardVmRegStoreToLoad(inst, IrCmd::LOAD_INT); } } break; case IrCmd::STORE_VECTOR: state.invalidateValue(inst.a); break; case IrCmd::STORE_TVALUE: if (inst.a.kind == IrOpKind::VmReg) { state.invalidate(inst.a); if (uint8_t tag = state.tryGetTag(inst.b); tag != 0xff) state.saveTag(inst.a, tag); if (IrOp value = state.tryGetValue(inst.b); value.kind != IrOpKind::None) state.saveValue(inst.a, value); state.forwardVmRegStoreToLoad(inst, IrCmd::LOAD_TVALUE); } break; case IrCmd::JUMP_IF_TRUTHY: if (uint8_t tag = state.tryGetTag(inst.a); tag != 0xff) { if (tag == LUA_TNIL) replace(function, block, index, {IrCmd::JUMP, inst.c}); else if (tag != LUA_TBOOLEAN) replace(function, block, index, {IrCmd::JUMP, inst.b}); } break; case IrCmd::JUMP_IF_FALSY: if (uint8_t tag = state.tryGetTag(inst.a); tag != 0xff) { if (tag == LUA_TNIL) replace(function, block, index, {IrCmd::JUMP, inst.b}); else if (tag != LUA_TBOOLEAN) replace(function, block, index, {IrCmd::JUMP, inst.c}); } break; case IrCmd::JUMP_EQ_TAG: { uint8_t tagA = inst.a.kind == IrOpKind::Constant ? function.tagOp(inst.a) : state.tryGetTag(inst.a); uint8_t tagB = inst.b.kind == IrOpKind::Constant ? function.tagOp(inst.b) : state.tryGetTag(inst.b); if (tagA != 0xff && tagB != 0xff) { if (tagA == tagB) replace(function, block, index, {IrCmd::JUMP, inst.c}); else replace(function, block, index, {IrCmd::JUMP, inst.d}); } break; } case IrCmd::JUMP_EQ_INT: { std::optional valueA = function.asIntOp(inst.a.kind == IrOpKind::Constant ? inst.a : state.tryGetValue(inst.a)); std::optional valueB = function.asIntOp(inst.b.kind == IrOpKind::Constant ? inst.b : state.tryGetValue(inst.b)); if (valueA && valueB) { if (*valueA == *valueB) replace(function, block, index, {IrCmd::JUMP, inst.c}); else replace(function, block, index, {IrCmd::JUMP, inst.d}); } break; } case IrCmd::JUMP_LT_INT: { std::optional valueA = function.asIntOp(inst.a.kind == IrOpKind::Constant ? inst.a : state.tryGetValue(inst.a)); std::optional valueB = function.asIntOp(inst.b.kind == IrOpKind::Constant ? inst.b : state.tryGetValue(inst.b)); if (valueA && valueB) { if (*valueA < *valueB) replace(function, block, index, {IrCmd::JUMP, inst.c}); else replace(function, block, index, {IrCmd::JUMP, inst.d}); } break; } case IrCmd::JUMP_GE_UINT: { std::optional valueA = function.asUintOp(inst.a.kind == IrOpKind::Constant ? inst.a : state.tryGetValue(inst.a)); std::optional valueB = function.asUintOp(inst.b.kind == IrOpKind::Constant ? inst.b : state.tryGetValue(inst.b)); if (valueA && valueB) { if (*valueA >= *valueB) replace(function, block, index, {IrCmd::JUMP, inst.c}); else replace(function, block, index, {IrCmd::JUMP, inst.d}); } break; } case IrCmd::JUMP_CMP_NUM: { std::optional valueA = function.asDoubleOp(inst.a.kind == IrOpKind::Constant ? inst.a : state.tryGetValue(inst.a)); std::optional valueB = function.asDoubleOp(inst.b.kind == IrOpKind::Constant ? inst.b : state.tryGetValue(inst.b)); if (valueA && valueB) { if (compare(*valueA, *valueB, conditionOp(inst.c))) replace(function, block, index, {IrCmd::JUMP, inst.d}); else replace(function, block, index, {IrCmd::JUMP, inst.e}); } break; } case IrCmd::GET_UPVALUE: state.invalidate(inst.a); break; case IrCmd::CHECK_TAG: { uint8_t b = function.tagOp(inst.b); if (uint8_t tag = state.tryGetTag(inst.a); tag != 0xff) { if (tag == b) kill(function, inst); else replace(function, block, index, {IrCmd::JUMP, inst.c}); // Shows a conflict in assumptions on this path } else { state.saveTag(inst.a, b); // We can assume the tag value going forward } break; } case IrCmd::CHECK_READONLY: if (RegisterInfo* info = state.tryGetRegisterInfo(inst.a)) { if (info->knownNotReadonly) kill(function, inst); else info->knownNotReadonly = true; } break; case IrCmd::CHECK_NO_METATABLE: if (RegisterInfo* info = state.tryGetRegisterInfo(inst.a)) { if (info->knownNoMetatable) kill(function, inst); else info->knownNoMetatable = true; } break; case IrCmd::CHECK_SAFE_ENV: if (state.inSafeEnv) kill(function, inst); else state.inSafeEnv = true; break; case IrCmd::CHECK_GC: // It is enough to perform a GC check once in a block if (state.checkedGc) kill(function, inst); else state.checkedGc = true; break; case IrCmd::BARRIER_OBJ: case IrCmd::BARRIER_TABLE_FORWARD: if (inst.b.kind == IrOpKind::VmReg) { if (uint8_t tag = state.tryGetTag(inst.b); tag != 0xff) { // If the written object is not collectable, barrier is not required if (!isGCO(tag)) kill(function, inst); } } break; // TODO: FASTCALL is more restrictive than INVOKE_FASTCALL; we should either determine the exact semantics, or rework it case IrCmd::FASTCALL: case IrCmd::INVOKE_FASTCALL: handleBuiltinEffects(state, LuauBuiltinFunction(function.uintOp(inst.a)), vmRegOp(inst.b), function.intOp(inst.f)); break; // These instructions don't have an effect on register/memory state we are tracking case IrCmd::NOP: case IrCmd::LOAD_NODE_VALUE_TV: case IrCmd::STORE_NODE_VALUE_TV: case IrCmd::LOAD_ENV: case IrCmd::GET_ARR_ADDR: case IrCmd::GET_SLOT_NODE_ADDR: case IrCmd::GET_HASH_NODE_ADDR: break; case IrCmd::ADD_INT: case IrCmd::SUB_INT: case IrCmd::ADD_NUM: case IrCmd::SUB_NUM: case IrCmd::MUL_NUM: case IrCmd::DIV_NUM: case IrCmd::MOD_NUM: case IrCmd::MIN_NUM: case IrCmd::MAX_NUM: case IrCmd::UNM_NUM: case IrCmd::FLOOR_NUM: case IrCmd::CEIL_NUM: case IrCmd::ROUND_NUM: case IrCmd::SQRT_NUM: case IrCmd::ABS_NUM: case IrCmd::NOT_ANY: state.substituteOrRecord(inst, index); break; case IrCmd::JUMP: case IrCmd::JUMP_EQ_POINTER: case IrCmd::JUMP_SLOT_MATCH: case IrCmd::TABLE_LEN: case IrCmd::NEW_TABLE: case IrCmd::DUP_TABLE: case IrCmd::TRY_NUM_TO_INDEX: case IrCmd::TRY_CALL_FASTGETTM: case IrCmd::INT_TO_NUM: case IrCmd::UINT_TO_NUM: case IrCmd::NUM_TO_INT: case IrCmd::NUM_TO_UINT: case IrCmd::CHECK_ARRAY_SIZE: case IrCmd::CHECK_SLOT_MATCH: case IrCmd::CHECK_NODE_NO_NEXT: case IrCmd::BARRIER_TABLE_BACK: case IrCmd::RETURN: case IrCmd::COVERAGE: case IrCmd::SET_UPVALUE: case IrCmd::SET_SAVEDPC: // TODO: we may be able to remove some updates to PC case IrCmd::CLOSE_UPVALS: // Doesn't change memory that we track case IrCmd::CAPTURE: case IrCmd::SUBSTITUTE: case IrCmd::ADJUST_STACK_TO_REG: // Changes stack top, but not the values case IrCmd::ADJUST_STACK_TO_TOP: // Changes stack top, but not the values case IrCmd::CHECK_FASTCALL_RES: // Changes stack top, but not the values case IrCmd::BITAND_UINT: case IrCmd::BITXOR_UINT: case IrCmd::BITOR_UINT: case IrCmd::BITNOT_UINT: case IrCmd::BITLSHIFT_UINT: case IrCmd::BITRSHIFT_UINT: case IrCmd::BITARSHIFT_UINT: case IrCmd::BITRROTATE_UINT: case IrCmd::BITLROTATE_UINT: case IrCmd::BITCOUNTLZ_UINT: case IrCmd::BITCOUNTRZ_UINT: case IrCmd::INVOKE_LIBM: break; case IrCmd::JUMP_CMP_ANY: state.invalidateUserCall(); // TODO: if arguments are strings, there will be no user calls break; case IrCmd::DO_ARITH: state.invalidate(inst.a); state.invalidateUserCall(); break; case IrCmd::DO_LEN: state.invalidate(inst.a); state.invalidateUserCall(); // TODO: if argument is a string, there will be no user call state.saveTag(inst.a, LUA_TNUMBER); break; case IrCmd::GET_TABLE: state.invalidate(inst.a); state.invalidateUserCall(); break; case IrCmd::SET_TABLE: state.invalidateUserCall(); break; case IrCmd::GET_IMPORT: state.invalidate(inst.a); state.invalidateUserCall(); break; case IrCmd::CONCAT: state.invalidateRegisterRange(vmRegOp(inst.a), function.uintOp(inst.b)); state.invalidateUserCall(); // TODO: if only strings and numbers are concatenated, there will be no user calls break; case IrCmd::PREPARE_FORN: state.invalidateValue(inst.a); state.saveTag(inst.a, LUA_TNUMBER); state.invalidateValue(inst.b); state.saveTag(inst.b, LUA_TNUMBER); state.invalidateValue(inst.c); state.saveTag(inst.c, LUA_TNUMBER); break; case IrCmd::INTERRUPT: state.invalidateUserCall(); break; case IrCmd::SETLIST: state.valueMap.clear(); // TODO: this can be relaxed when x64 emitInstSetList becomes aware of register allocator break; case IrCmd::CALL: state.invalidateRegistersFrom(vmRegOp(inst.a)); state.invalidateUserCall(); // We cannot guarantee right now that all live values can be remeterialized from non-stack memory locations // To prevent earlier values from being propagated to after the call, we have to clear the map // TODO: remove only the values that don't have a guaranteed restore location state.valueMap.clear(); break; case IrCmd::FORGLOOP: state.invalidateRegistersFrom(vmRegOp(inst.a) + 2); // Rn and Rn+1 are not modified state.valueMap.clear(); // TODO: this can be relaxed when x64 emitInstForGLoop becomes aware of register allocator break; case IrCmd::FORGLOOP_FALLBACK: state.invalidateRegistersFrom(vmRegOp(inst.a) + 2); // Rn and Rn+1 are not modified state.invalidateUserCall(); break; case IrCmd::FORGPREP_XNEXT_FALLBACK: // This fallback only conditionally throws an exception break; // Full fallback instructions case IrCmd::FALLBACK_GETGLOBAL: state.invalidate(inst.b); state.invalidateUserCall(); break; case IrCmd::FALLBACK_SETGLOBAL: state.invalidateUserCall(); break; case IrCmd::FALLBACK_GETTABLEKS: state.invalidate(inst.b); state.invalidateUserCall(); break; case IrCmd::FALLBACK_SETTABLEKS: state.invalidateUserCall(); break; case IrCmd::FALLBACK_NAMECALL: state.invalidate(IrOp{inst.b.kind, vmRegOp(inst.b) + 0u}); state.invalidate(IrOp{inst.b.kind, vmRegOp(inst.b) + 1u}); state.invalidateUserCall(); break; case IrCmd::FALLBACK_PREPVARARGS: break; case IrCmd::FALLBACK_GETVARARGS: state.invalidateRegisterRange(vmRegOp(inst.b), function.intOp(inst.c)); break; case IrCmd::FALLBACK_NEWCLOSURE: state.invalidate(inst.b); break; case IrCmd::FALLBACK_DUPCLOSURE: state.invalidate(inst.b); break; case IrCmd::FALLBACK_FORGPREP: state.invalidate(IrOp{inst.b.kind, vmRegOp(inst.b) + 0u}); state.invalidate(IrOp{inst.b.kind, vmRegOp(inst.b) + 1u}); state.invalidate(IrOp{inst.b.kind, vmRegOp(inst.b) + 2u}); break; } } static void constPropInBlock(IrBuilder& build, IrBlock& block, ConstPropState& state) { IrFunction& function = build.function; for (uint32_t index = block.start; index <= block.finish; index++) { LUAU_ASSERT(index < function.instructions.size()); IrInst& inst = function.instructions[index]; applySubstitutions(function, inst); foldConstants(build, function, block, index); constPropInInst(state, build, function, block, inst, index); } // Value numbering and load/store propagation is not performed between blocks state.valueMap.clear(); } static void constPropInBlockChain(IrBuilder& build, std::vector& visited, IrBlock* block, ConstPropState& state) { IrFunction& function = build.function; state.clear(); while (block) { uint32_t blockIdx = function.getBlockIndex(*block); LUAU_ASSERT(!visited[blockIdx]); visited[blockIdx] = true; constPropInBlock(build, *block, state); IrInst& termInst = function.instructions[block->finish]; IrBlock* nextBlock = nullptr; // Unconditional jump into a block with a single user (current block) allows us to continue optimization // with the information we have gathered so far (unless we have already visited that block earlier) if (termInst.cmd == IrCmd::JUMP) { IrBlock& target = function.blockOp(termInst.a); uint32_t targetIdx = function.getBlockIndex(target); if (target.useCount == 1 && !visited[targetIdx] && target.kind != IrBlockKind::Fallback) nextBlock = ⌖ } block = nextBlock; } } // Note that blocks in the collected path are marked as visited static std::vector collectDirectBlockJumpPath(IrFunction& function, std::vector& visited, IrBlock* block) { // Path shouldn't be built starting with a block that has 'live out' values. // One theoretical way to get it is if we had 'block' jumping unconditionally into a successor that uses values from 'block' // * if the successor has only one use, the starting conditions of 'tryCreateLinearBlock' would prevent this // * if the successor has multiple uses, it can't have such 'live in' values without phi nodes that we don't have yet // Another possibility is to have two paths from 'block' into the target through two intermediate blocks // Usually that would mean that we would have a conditional jump at the end of 'block' // But using check guards and fallback blocks it becomes a possible setup // We avoid this by making sure fallbacks rejoin the other immediate successor of 'block' LUAU_ASSERT(getLiveOutValueCount(function, *block) == 0); std::vector path; while (block) { IrInst& termInst = function.instructions[block->finish]; IrBlock* nextBlock = nullptr; // A chain is made from internal blocks that were not a part of bytecode CFG if (termInst.cmd == IrCmd::JUMP) { IrBlock& target = function.blockOp(termInst.a); uint32_t targetIdx = function.getBlockIndex(target); if (!visited[targetIdx] && target.kind == IrBlockKind::Internal) { // Additional restriction is that to join a block, it cannot produce values that are used in other blocks // And it also can't use values produced in other blocks auto [liveIns, liveOuts] = getLiveInOutValueCount(function, target); if (liveIns == 0 && liveOuts == 0) { visited[targetIdx] = true; path.push_back(targetIdx); nextBlock = ⌖ } } } block = nextBlock; } return path; } static void tryCreateLinearBlock(IrBuilder& build, std::vector& visited, IrBlock& startingBlock, ConstPropState& state) { IrFunction& function = build.function; uint32_t blockIdx = function.getBlockIndex(startingBlock); LUAU_ASSERT(!visited[blockIdx]); visited[blockIdx] = true; IrInst& termInst = function.instructions[startingBlock.finish]; // Block has to end with an unconditional jump if (termInst.cmd != IrCmd::JUMP) return; // And it has to jump to a block with more than one user // If there's only one use, it should already be optimized by constPropInBlockChain if (function.blockOp(termInst.a).useCount == 1) return; uint32_t targetBlockIdx = termInst.a.index; // Check if this path is worth it (and it will also mark path blocks as visited) std::vector path = collectDirectBlockJumpPath(function, visited, &startingBlock); // If path is too small, we are not going to linearize it if (int(path.size()) < FInt::LuauCodeGenMinLinearBlockPath) return; // Initialize state with the knowledge of our current block state.clear(); // TODO: using values from the first block can cause 'live out' of the linear block predecessor to not have all required registers constPropInBlock(build, startingBlock, state); // Veryfy that target hasn't changed LUAU_ASSERT(function.instructions[startingBlock.finish].a.index == targetBlockIdx); // Create new linearized block into which we are going to redirect starting block jump IrOp newBlock = build.block(IrBlockKind::Linearized); visited.push_back(false); // TODO: placement of linear blocks in final lowering is sub-optimal, it should follow our predecessor build.beginBlock(newBlock); replace(function, termInst.a, newBlock); // Clone the collected path into our fresh block for (uint32_t pathBlockIdx : path) build.clone(function.blocks[pathBlockIdx], /* removeCurrentTerminator */ true); // If all live in/out data is defined aside from the new block, generate it // Note that liveness information is not strictly correct after optimization passes and may need to be recomputed before next passes // The information generated here is consistent with current state that could be outdated, but still useful in IR inspection if (function.cfg.in.size() == newBlock.index) { LUAU_ASSERT(function.cfg.in.size() == function.cfg.out.size()); LUAU_ASSERT(function.cfg.in.size() == function.cfg.def.size()); // Live in is the same as the input of the original first block function.cfg.in.push_back(function.cfg.in[path.front()]); // Live out is the same as the result of the original last block function.cfg.out.push_back(function.cfg.out[path.back()]); // Defs are tricky, registers are joined together, but variadic sequences can be consumed inside the block function.cfg.def.push_back({}); RegisterSet& def = function.cfg.def.back(); for (uint32_t pathBlockIdx : path) { const RegisterSet& pathDef = function.cfg.def[pathBlockIdx]; def.regs |= pathDef.regs; // Taking only the last defined variadic sequence if it's not consumed before before the end if (pathDef.varargSeq && function.cfg.out.back().varargSeq) { def.varargSeq = true; def.varargStart = pathDef.varargStart; } } } // Optimize our linear block IrBlock& linearBlock = function.blockOp(newBlock); constPropInBlock(build, linearBlock, state); } void constPropInBlockChains(IrBuilder& build, bool useValueNumbering) { IrFunction& function = build.function; ConstPropState state{function}; state.useValueNumbering = useValueNumbering; std::vector visited(function.blocks.size(), false); for (IrBlock& block : function.blocks) { if (block.kind == IrBlockKind::Fallback || block.kind == IrBlockKind::Dead) continue; if (visited[function.getBlockIndex(block)]) continue; constPropInBlockChain(build, visited, &block, state); } } void createLinearBlocks(IrBuilder& build, bool useValueNumbering) { // Go through internal block chains and outline them into a single new block. // Outlining will be able to linearize the execution, even if there was a jump to a block with multiple users, // new 'block' will only be reachable from a single one and all gathered information can be preserved. IrFunction& function = build.function; ConstPropState state{function}; state.useValueNumbering = useValueNumbering; std::vector visited(function.blocks.size(), false); // This loop can create new 'linear' blocks, so index-based loop has to be used (and it intentionally won't reach those new blocks) size_t originalBlockCount = function.blocks.size(); for (size_t i = 0; i < originalBlockCount; i++) { IrBlock& block = function.blocks[i]; if (block.kind == IrBlockKind::Fallback || block.kind == IrBlockKind::Dead) continue; if (visited[function.getBlockIndex(block)]) continue; tryCreateLinearBlock(build, visited, block, state); } } } // namespace CodeGen } // namespace Luau