{-# OPTIONS --rewriting #-} module Properties.DecSubtyping where open import Agda.Builtin.Equality using (_≡_; refl) open import FFI.Data.Either using (Either; Left; Right; mapLR; swapLR; cond) open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_) open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_; src; tgt) open import Properties.Contradiction using (CONTRADICTION; ¬) open import Properties.Functions using (_∘_) -- ¬Language T is the complement of Language T language-comp : ∀ {T} t → ¬Language T t → ¬(Language T t) language-comp t (p₁ , p₂) (left q) = language-comp t p₁ q language-comp t (p₁ , p₂) (right q) = language-comp t p₂ q language-comp t (left p) (q₁ , q₂) = language-comp t p q₁ language-comp t (right p) (q₁ , q₂) = language-comp t p q₂ language-comp (scalar s) (scalar-scalar s p₁ p₂) (scalar s) = p₂ refl language-comp (scalar s) (function-scalar s) (scalar s) = language-comp function (scalar-function s) function language-comp (scalar s) never (scalar ()) language-comp function (scalar-function ()) function language-comp (function-ok t) (scalar-function-ok ()) (function-ok q) language-comp (function-ok t) (function-ok p) (function-ok q) = language-comp t p q language-comp (function-err t) (function-err p) (function-err q) = language-comp t q p -- Properties of src function-err-src : ∀ {T t} → (¬Language (src T) t) → Language T (function-err t) function-err-src {T = nil} never = scalar-function-err nil function-err-src {T = T₁ ⇒ T₂} p = function-err p function-err-src {T = never} (scalar-scalar number () p) function-err-src {T = never} (scalar-function-ok ()) function-err-src {T = unknown} never = unknown function-err-src {T = boolean} p = scalar-function-err boolean function-err-src {T = number} p = scalar-function-err number function-err-src {T = string} p = scalar-function-err string function-err-src {T = T₁ ∪ T₂} (left p) = left (function-err-src p) function-err-src {T = T₁ ∪ T₂} (right p) = right (function-err-src p) function-err-src {T = T₁ ∩ T₂} (p₁ , p₂) = function-err-src p₁ , function-err-src p₂ ¬function-err-src : ∀ {T t} → (Language (src T) t) → ¬Language T (function-err t) ¬function-err-src {T = nil} (scalar ()) ¬function-err-src {T = T₁ ⇒ T₂} p = function-err p ¬function-err-src {T = never} unknown = never ¬function-err-src {T = unknown} (scalar ()) ¬function-err-src {T = boolean} (scalar ()) ¬function-err-src {T = number} (scalar ()) ¬function-err-src {T = string} (scalar ()) ¬function-err-src {T = T₁ ∪ T₂} (p₁ , p₂) = (¬function-err-src p₁ , ¬function-err-src p₂) ¬function-err-src {T = T₁ ∩ T₂} (left p) = left (¬function-err-src p) ¬function-err-src {T = T₁ ∩ T₂} (right p) = right (¬function-err-src p) src-¬function-err : ∀ {T t} → Language T (function-err t) → (¬Language (src T) t) src-¬function-err {T = nil} p = never src-¬function-err {T = T₁ ⇒ T₂} (function-err p) = p src-¬function-err {T = never} (scalar-function-err ()) src-¬function-err {T = unknown} p = never src-¬function-err {T = boolean} p = never src-¬function-err {T = number} p = never src-¬function-err {T = string} p = never src-¬function-err {T = T₁ ∪ T₂} (left p) = left (src-¬function-err p) src-¬function-err {T = T₁ ∪ T₂} (right p) = right (src-¬function-err p) src-¬function-err {T = T₁ ∩ T₂} (p₁ , p₂) = (src-¬function-err p₁ , src-¬function-err p₂) src-≮: : ∀ {T U} → (src T ≮: src U) → (U ≮: T) src-≮: (witness t p q) = witness (function-err t) (function-err-src q) (¬function-err-src p) -- Properties of tgt tgt-function-ok : ∀ {T t} → (Language (tgt T) t) → Language T (function-ok t) tgt-function-ok {T = nil} (scalar ()) tgt-function-ok {T = T₁ ⇒ T₂} p = function-ok p tgt-function-ok {T = never} (scalar ()) tgt-function-ok {T = unknown} p = unknown tgt-function-ok {T = boolean} (scalar ()) tgt-function-ok {T = number} (scalar ()) tgt-function-ok {T = string} (scalar ()) tgt-function-ok {T = T₁ ∪ T₂} (left p) = left (tgt-function-ok p) tgt-function-ok {T = T₁ ∪ T₂} (right p) = right (tgt-function-ok p) tgt-function-ok {T = T₁ ∩ T₂} (p₁ , p₂) = (tgt-function-ok p₁ , tgt-function-ok p₂) function-ok-tgt : ∀ {T t} → Language T (function-ok t) → (Language (tgt T) t) function-ok-tgt (function-ok p) = p function-ok-tgt (left p) = left (function-ok-tgt p) function-ok-tgt (right p) = right (function-ok-tgt p) function-ok-tgt (p₁ , p₂) = (function-ok-tgt p₁ , function-ok-tgt p₂) function-ok-tgt unknown = unknown tgt-¬function-ok : ∀ {T t} → (¬Language (tgt T) t) → ¬Language T (function-ok t) tgt-¬function-ok {T = nil} p = scalar-function-ok nil tgt-¬function-ok {T = T₁ ⇒ T₂} p = function-ok p tgt-¬function-ok {T = never} p = never tgt-¬function-ok {T = unknown} (scalar-scalar s () p) tgt-¬function-ok {T = unknown} (scalar-function ()) tgt-¬function-ok {T = unknown} (scalar-function-ok ()) tgt-¬function-ok {T = boolean} p = scalar-function-ok boolean tgt-¬function-ok {T = number} p = scalar-function-ok number tgt-¬function-ok {T = string} p = scalar-function-ok string tgt-¬function-ok {T = T₁ ∪ T₂} (p₁ , p₂) = (tgt-¬function-ok p₁ , tgt-¬function-ok p₂) tgt-¬function-ok {T = T₁ ∩ T₂} (left p) = left (tgt-¬function-ok p) tgt-¬function-ok {T = T₁ ∩ T₂} (right p) = right (tgt-¬function-ok p) tgt-≮: : ∀ {T U} → (tgt T ≮: tgt U) → (T ≮: U) tgt-≮: (witness t p q) = witness (function-ok t) (tgt-function-ok p) (tgt-¬function-ok q) -- Language membership is decidable dec-language : ∀ T t → Either (¬Language T t) (Language T t) dec-language nil (scalar number) = Left (scalar-scalar number nil (λ ())) dec-language nil (scalar boolean) = Left (scalar-scalar boolean nil (λ ())) dec-language nil (scalar string) = Left (scalar-scalar string nil (λ ())) dec-language nil (scalar nil) = Right (scalar nil) dec-language nil function = Left (scalar-function nil) dec-language nil (function-ok t) = Left (scalar-function-ok nil) dec-language nil (function-err t) = Right (scalar-function-err nil) dec-language boolean (scalar number) = Left (scalar-scalar number boolean (λ ())) dec-language boolean (scalar boolean) = Right (scalar boolean) dec-language boolean (scalar string) = Left (scalar-scalar string boolean (λ ())) dec-language boolean (scalar nil) = Left (scalar-scalar nil boolean (λ ())) dec-language boolean function = Left (scalar-function boolean) dec-language boolean (function-ok t) = Left (scalar-function-ok boolean) dec-language boolean (function-err t) = Right (scalar-function-err boolean) dec-language number (scalar number) = Right (scalar number) dec-language number (scalar boolean) = Left (scalar-scalar boolean number (λ ())) dec-language number (scalar string) = Left (scalar-scalar string number (λ ())) dec-language number (scalar nil) = Left (scalar-scalar nil number (λ ())) dec-language number function = Left (scalar-function number) dec-language number (function-ok t) = Left (scalar-function-ok number) dec-language number (function-err t) = Right (scalar-function-err number) dec-language string (scalar number) = Left (scalar-scalar number string (λ ())) dec-language string (scalar boolean) = Left (scalar-scalar boolean string (λ ())) dec-language string (scalar string) = Right (scalar string) dec-language string (scalar nil) = Left (scalar-scalar nil string (λ ())) dec-language string function = Left (scalar-function string) dec-language string (function-ok t) = Left (scalar-function-ok string) dec-language string (function-err t) = Right (scalar-function-err string) dec-language (T₁ ⇒ T₂) (scalar s) = Left (function-scalar s) dec-language (T₁ ⇒ T₂) function = Right function dec-language (T₁ ⇒ T₂) (function-ok t) = mapLR function-ok function-ok (dec-language T₂ t) dec-language (T₁ ⇒ T₂) (function-err t) = mapLR function-err function-err (swapLR (dec-language T₁ t)) dec-language never t = Left never dec-language unknown t = Right unknown dec-language (T₁ ∪ T₂) t = cond (λ p → cond (Left ∘ _,_ p) (Right ∘ right) (dec-language T₂ t)) (Right ∘ left) (dec-language T₁ t) dec-language (T₁ ∩ T₂) t = cond (Left ∘ left) (λ p → cond (Left ∘ right) (Right ∘ _,_ p) (dec-language T₂ t)) (dec-language T₁ t) -- if T <: U then ¬Language U ⊆ ¬Language T <:-impl-⊇ : ∀ {T U} → (T <: U) → ∀ t → ¬Language U t → ¬Language T t <:-impl-⊇ {T} p t ¬Ut with dec-language T t <:-impl-⊇ p t ¬Ut | Left ¬Tt = ¬Tt <:-impl-⊇ p t ¬Ut | Right Tt = CONTRADICTION (language-comp t ¬Ut (p t Tt)) -- Subtyping is decidable -- Honest, this terminates (because src T and tgt T decrease the depth of the type) {-# TERMINATING #-} dec-subtyping : ∀ T U → Either (T ≮: U) (T <: U) dec-subtyping T U = result where P : Tree → Set P t = Either (¬Language T t) (Language U t) Q : Tree → Set Q t = Either (T ≮: U) (P t) decQ : ∀ t → Q t decQ t with dec-language T t | dec-language U t decQ t | Left ¬Tt | _ = Right (Left ¬Tt) decQ t | Right Tt | Left ¬Ut = Left (witness t Tt ¬Ut) decQ t | Right _ | Right Ut = Right (Right Ut) lemma : P(scalar number) → P(scalar boolean) → P(scalar nil) → P(scalar string) → P(function) → (src U <: src T) → (tgt T <: tgt U) → (T <: U) lemma (Left ¬Tt) boolP nilP stringP funP srcy tgty (scalar number) Tt = CONTRADICTION (language-comp (scalar number) ¬Tt Tt) lemma (Right Ut) boolP nilP stringP funP srcy tgty (scalar number) Tt = Ut lemma numP (Left ¬Tt) nilP stringP funP srcy tgty (scalar boolean) Tt = CONTRADICTION (language-comp (scalar boolean) ¬Tt Tt) lemma numP (Right Ut) nilP stringP funP srcy tgty (scalar boolean) Tt = Ut lemma numP boolP (Left ¬Tt) stringP funP srcy tgty (scalar nil) Tt = CONTRADICTION (language-comp (scalar nil) ¬Tt Tt) lemma numP boolP (Right Ut) stringP funP srcy tgty (scalar nil) Tt = Ut lemma numP boolP nilP (Left ¬Tt) funP srcy tgty (scalar string) Tt = CONTRADICTION (language-comp (scalar string) ¬Tt Tt) lemma numP boolP nilP (Right Ut) funP srcy tgty (scalar string) Tt = Ut lemma numP boolP nilP stringP (Left ¬Tt) srcy tgty function Tt = CONTRADICTION (language-comp function ¬Tt Tt) lemma numP boolP nilP stringP (Right Ut) srcy tgty function Tt = Ut lemma numP boolP nilP stringP funP srcy tgty (function-ok t) Tt = tgt-function-ok (tgty t (function-ok-tgt Tt)) lemma numP boolP nilP stringP funP srcy tgty (function-err t) Tt = function-err-src (<:-impl-⊇ srcy t (src-¬function-err Tt)) result : Either (T ≮: U) (T <: U) result with decQ (scalar number) result | Left r = Left r result | Right numP with decQ (scalar boolean) result | Right numP | Left r = Left r result | Right numP | Right boolP with decQ (scalar nil) result | Right numP | Right boolP | Left r = Left r result | Right numP | Right boolP | Right nilP with decQ (scalar string) result | Right numP | Right boolP | Right nilP | Left r = Left r result | Right numP | Right boolP | Right nilP | Right strP with decQ (function) result | Right numP | Right boolP | Right nilP | Right strP | Left r = Left r result | Right numP | Right boolP | Right nilP | Right strP | Right funP with dec-subtyping (src U) (src T) result | Right numP | Right boolP | Right nilP | Right strP | Right funP | Left r = Left (src-≮: r) result | Right numP | Right boolP | Right nilP | Right strP | Right funP | Right srcy with dec-subtyping (tgt T) (tgt U) result | Right numP | Right boolP | Right nilP | Right strP | Right funP | Right srcy | Left r = Left (tgt-≮: r) result | Right numP | Right boolP | Right nilP | Right strP | Right funP | Right srcy | Right tgty = Right (lemma numP boolP nilP strP funP srcy tgty)