// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details // This code is based on Lua 5.x implementation licensed under MIT License; see lua_LICENSE.txt for details #include "luaconf.h" #include "lnumutils.h" #include "lcommon.h" #include #ifdef _MSC_VER #include #endif LUAU_FASTFLAGVARIABLE(LuauSciNumberSkipTrailDot, false) // This work is based on: // Raffaello Giulietti. The Schubfach way to render doubles. 2021 // https://drive.google.com/file/d/1IEeATSVnEE6TkrHlCYNY2GjaraBjOT4f/edit // The code uses the notation from the paper for local variables where appropriate, and refers to paper sections/figures/results. // 9.8.2. Precomputed table for 128-bit overestimates of powers of 10 (see figure 3 for table bounds) // To avoid storing 616 128-bit numbers directly we use a technique inspired by Dragonbox implementation and store 16 consecutive // powers using a 128-bit baseline and a bitvector with 1-bit scale and 3-bit offset for the delta between each entry and base*5^k static const int kPow10TableMin = -292; static const int kPow10TableMax = 324; // clang-format off static const uint64_t kPow5Table[16] = { 0x8000000000000000, 0xa000000000000000, 0xc800000000000000, 0xfa00000000000000, 0x9c40000000000000, 0xc350000000000000, 0xf424000000000000, 0x9896800000000000, 0xbebc200000000000, 0xee6b280000000000, 0x9502f90000000000, 0xba43b74000000000, 0xe8d4a51000000000, 0x9184e72a00000000, 0xb5e620f480000000, 0xe35fa931a0000000, }; static const uint64_t kPow10Table[(kPow10TableMax - kPow10TableMin + 1 + 15) / 16][3] = { {0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b, 0x333443443333443b}, {0x8dd01fad907ffc3b, 0xae3da7d97f6792e4, 0xbbb3ab3cb3ba3cbc}, {0x9d71ac8fada6c9b5, 0x6f773fc3603db4aa, 0x4ba4bc4bb4bb4bcc}, {0xaecc49914078536d, 0x58fae9f773886e19, 0x3ba3bc33b43b43bb}, {0xc21094364dfb5636, 0x985915fc12f542e5, 0x33b43b43a33b33cb}, {0xd77485cb25823ac7, 0x7d633293366b828c, 0x34b44c444343443c}, {0xef340a98172aace4, 0x86fb897116c87c35, 0x333343333343334b}, {0x84c8d4dfd2c63f3b, 0x29ecd9f40041e074, 0xccaccbbcbcbb4bbc}, {0x936b9fcebb25c995, 0xcab10dd900beec35, 0x3ab3ab3ab3bb3bbb}, {0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebbb, 0x4cc3dc4db4db4dbb}, {0xb5b5ada8aaff80b8, 0x0d819992132456bb, 0x33b33a34c33b34ab}, {0xc9bcff6034c13052, 0xfc89b393dd02f0b6, 0x33c33b44b43c34bc}, {0xdff9772470297ebd, 0x59787e2b93bc56f8, 0x43b444444443434c}, {0xf8a95fcf88747d94, 0x75a44c6397ce912b, 0x443334343443343b}, {0x8a08f0f8bf0f156b, 0x1b8e9ecb641b5900, 0xbbabab3aa3ab4ccc}, {0x993fe2c6d07b7fab, 0xe546a8038efe402a, 0x4cb4bc4db4db4bcc}, {0xaa242499697392d2, 0xdde50bd1d5d0b9ea, 0x3ba3ba3bb33b33bc}, {0xbce5086492111aea, 0x88f4bb1ca6bcf585, 0x44b44c44c44c43cb}, {0xd1b71758e219652b, 0xd3c36113404ea4a9, 0x44c44c44c444443b}, {0xe8d4a51000000000, 0x0000000000000000, 0x444444444444444c}, {0x813f3978f8940984, 0x4000000000000000, 0xcccccccccccccccc}, {0x8f7e32ce7bea5c6f, 0xe4820023a2000000, 0xbba3bc4cc4cc4ccc}, {0x9f4f2726179a2245, 0x01d762422c946591, 0x4aa3bb3aa3ba3bab}, {0xb0de65388cc8ada8, 0x3b25a55f43294bcc, 0x3ca33b33b44b43bc}, {0xc45d1df942711d9a, 0x3ba5d0bd324f8395, 0x44c44c34c44b44cb}, {0xda01ee641a708de9, 0xe80e6f4820cc9496, 0x33b33b343333333c}, {0xf209787bb47d6b84, 0xc0678c5dbd23a49b, 0x443444444443443b}, {0x865b86925b9bc5c2, 0x0b8a2392ba45a9b3, 0xdbccbcccb4cb3bbb}, {0x952ab45cfa97a0b2, 0xdd945a747bf26184, 0x3bc4bb4ab3ca3cbc}, {0xa59bc234db398c25, 0x43fab9837e699096, 0x3bb3ac3ab3bb33ac}, {0xb7dcbf5354e9bece, 0x0c11ed6d538aeb30, 0x33b43b43b34c34dc}, {0xcc20ce9bd35c78a5, 0x31ec038df7b441f5, 0x34c44c43c44b44cb}, {0xe2a0b5dc971f303a, 0x2e44ae64840fd61e, 0x333333333333333c}, {0xfb9b7cd9a4a7443c, 0x169840ef017da3b2, 0x433344443333344c}, {0x8bab8eefb6409c1a, 0x1ad089b6c2f7548f, 0xdcbdcc3cc4cc4bcb}, {0x9b10a4e5e9913128, 0xca7cf2b4191c8327, 0x3ab3cb3bc3bb4bbb}, {0xac2820d9623bf429, 0x546345fa9fbdcd45, 0x3bb3cc43c43c43cb}, {0xbf21e44003acdd2c, 0xe0470a63e6bd56c4, 0x44b34a43b44c44bc}, {0xd433179d9c8cb841, 0x5fa60692a46151ec, 0x43a33a33a333333c}, }; // clang-format on static const char kDigitTable[] = "0001020304050607080910111213141516171819202122232425262728293031323334353637383940414243444546474849" "5051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899"; // x*y => 128-bit product (lo+hi) inline uint64_t mul128(uint64_t x, uint64_t y, uint64_t* hi) { #if defined(_MSC_VER) && defined(_M_X64) return _umul128(x, y, hi); #elif defined(__SIZEOF_INT128__) unsigned __int128 r = x; r *= y; *hi = uint64_t(r >> 64); return uint64_t(r); #else uint32_t x0 = uint32_t(x), x1 = uint32_t(x >> 32); uint32_t y0 = uint32_t(y), y1 = uint32_t(y >> 32); uint64_t p11 = uint64_t(x1) * y1, p01 = uint64_t(x0) * y1; uint64_t p10 = uint64_t(x1) * y0, p00 = uint64_t(x0) * y0; uint64_t mid = p10 + (p00 >> 32) + uint32_t(p01); uint64_t r0 = (mid << 32) | uint32_t(p00); uint64_t r1 = p11 + (mid >> 32) + (p01 >> 32); *hi = r1; return r0; #endif } // (x*y)>>64 => 128-bit product (lo+hi) inline uint64_t mul192hi(uint64_t xhi, uint64_t xlo, uint64_t y, uint64_t* hi) { uint64_t z2; uint64_t z1 = mul128(xhi, y, &z2); uint64_t z1c; uint64_t z0 = mul128(xlo, y, &z1c); (void)z0; z1 += z1c; z2 += (z1 < z1c); *hi = z2; return z1; } // 9.3. Rounding to odd (+ figure 8 + result 23) inline uint64_t roundodd(uint64_t ghi, uint64_t glo, uint64_t cp) { uint64_t xhi; uint64_t xlo = mul128(glo, cp, &xhi); (void)xlo; uint64_t yhi; uint64_t ylo = mul128(ghi, cp, &yhi); uint64_t z = ylo + xhi; return (yhi + (z < xhi)) | (z > 1); } struct Decimal { uint64_t s; int k; }; static Decimal schubfach(int exponent, uint64_t fraction) { // Extract c & q such that c*2^q == |v| uint64_t c = fraction; int q = exponent - 1023 - 51; if (exponent != 0) // normal numbers have implicit leading 1 { c |= (1ull << 52); q--; } // 8.3. Fast path for integers if (unsigned(-q) < 53 && (c & ((1ull << (-q)) - 1)) == 0) return {c >> (-q), 0}; // 5. Rounding interval int irr = (c == (1ull << 52) && q != -1074); // Qmin int out = int(c & 1); // 9.8.1. Boundaries for c uint64_t cbl = 4 * c - 2 + irr; uint64_t cb = 4 * c; uint64_t cbr = 4 * c + 2; // 9.1. Computing k and h const int Q = 20; const int C = 315652; // floor(2^Q * log10(2)) const int A = -131008; // floor(2^Q * log10(3/4)) const int C2 = 3483294; // floor(2^Q * log2(10)) int k = (q * C + (irr ? A : 0)) >> Q; int h = q + ((-k * C2) >> Q) + 1; // see (9) in 9.9 // 9.8.2. Overestimates of powers of 10 // Recover 10^-k fraction using compact tables generated by tools/numutils.py // The 128-bit fraction is encoded as 128-bit baseline * power-of-5 * scale + offset LUAU_ASSERT(-k >= kPow10TableMin && -k <= kPow10TableMax); int gtoff = -k - kPow10TableMin; const uint64_t* gt = kPow10Table[gtoff >> 4]; uint64_t ghi; uint64_t glo = mul192hi(gt[0], gt[1], kPow5Table[gtoff & 15], &ghi); // Apply 1-bit scale + 3-bit offset; note, offset is intentionally applied without carry, numutils.py validates that this is sufficient int gterr = (gt[2] >> ((gtoff & 15) * 4)) & 15; int gtscale = gterr >> 3; ghi <<= gtscale; ghi += (glo >> 63) & gtscale; glo <<= gtscale; glo -= (gterr & 7) - 4; // 9.9. Boundaries for v uint64_t vbl = roundodd(ghi, glo, cbl << h); uint64_t vb = roundodd(ghi, glo, cb << h); uint64_t vbr = roundodd(ghi, glo, cbr << h); // Main algorithm; see figure 7 + figure 9 uint64_t s = vb / 4; if (s >= 10) { uint64_t sp = s / 10; bool upin = vbl + out <= 40 * sp; bool wpin = vbr >= 40 * sp + 40 + out; if (upin != wpin) return {sp + wpin, k + 1}; } // Figure 7 contains the algorithm to select between u (s) and w (s+1) // rup computes the last 4 conditions in that algorithm // rup is only used when uin == win, but since these branches predict poorly we use branchless selects bool uin = vbl + out <= 4 * s; bool win = 4 * s + 4 + out <= vbr; bool rup = vb >= 4 * s + 2 + 1 - (s & 1); return {s + (uin != win ? win : rup), k}; } static char* printspecial(char* buf, int sign, uint64_t fraction) { if (fraction == 0) { memcpy(buf, ("-inf") + (1 - sign), 4); return buf + 3 + sign; } else { memcpy(buf, "nan", 4); return buf + 3; } } static char* printunsignedrev(char* end, uint64_t num) { while (num >= 10000) { unsigned int tail = unsigned(num % 10000); memcpy(end - 4, &kDigitTable[int(tail / 100) * 2], 2); memcpy(end - 2, &kDigitTable[int(tail % 100) * 2], 2); num /= 10000; end -= 4; } unsigned int rest = unsigned(num); while (rest >= 10) { memcpy(end - 2, &kDigitTable[int(rest % 100) * 2], 2); rest /= 100; end -= 2; } if (rest) { end[-1] = '0' + int(rest); end -= 1; } return end; } static char* printexp(char* buf, int num) { *buf++ = 'e'; *buf++ = num < 0 ? '-' : '+'; int v = num < 0 ? -num : num; if (v >= 100) { *buf++ = '0' + (v / 100); v %= 100; } memcpy(buf, &kDigitTable[v * 2], 2); return buf + 2; } inline char* trimzero(char* end) { while (end[-1] == '0') end--; return end; } // We use fixed-length memcpy/memset since they lower to fast SIMD+scalar writes; the target buffers should have padding space #define fastmemcpy(dst, src, size, sizefast) check_exp((size) <= sizefast, memcpy(dst, src, sizefast)) #define fastmemset(dst, val, size, sizefast) check_exp((size) <= sizefast, memset(dst, val, sizefast)) char* luai_num2str(char* buf, double n) { // IEEE-754 union { double v; uint64_t bits; } v = {n}; int sign = int(v.bits >> 63); int exponent = int(v.bits >> 52) & 2047; uint64_t fraction = v.bits & ((1ull << 52) - 1); // specials if (LUAU_UNLIKELY(exponent == 0x7ff)) return printspecial(buf, sign, fraction); // sign bit *buf = '-'; buf += sign; // zero if (exponent == 0 && fraction == 0) { buf[0] = '0'; return buf + 1; } // convert binary to decimal using Schubfach Decimal d = schubfach(exponent, fraction); LUAU_ASSERT(d.s < uint64_t(1e17)); // print the decimal to a temporary buffer; we'll need to insert the decimal point and figure out the format char decbuf[40]; char* decend = decbuf + 20; // significand needs at most 17 digits; the rest of the buffer may be copied using fixed length memcpy char* dec = printunsignedrev(decend, d.s); int declen = int(decend - dec); LUAU_ASSERT(declen <= 17); int dot = declen + d.k; // the limits are somewhat arbitrary but changing them may require changing fastmemset/fastmemcpy sizes below if (dot >= -5 && dot <= 21) { // fixed point format if (dot <= 0) { buf[0] = '0'; buf[1] = '.'; fastmemset(buf + 2, '0', -dot, 5); fastmemcpy(buf + 2 + (-dot), dec, declen, 17); return trimzero(buf + 2 + (-dot) + declen); } else if (dot == declen) { // no dot fastmemcpy(buf, dec, dot, 17); return buf + dot; } else if (dot < declen) { // dot in the middle fastmemcpy(buf, dec, dot, 16); buf[dot] = '.'; fastmemcpy(buf + dot + 1, dec + dot, declen - dot, 16); return trimzero(buf + declen + 1); } else { // no dot, zero padding fastmemcpy(buf, dec, declen, 17); fastmemset(buf + declen, '0', dot - declen, 8); return buf + dot; } } else { // scientific format buf[0] = dec[0]; buf[1] = '.'; fastmemcpy(buf + 2, dec + 1, declen - 1, 16); char* exp = trimzero(buf + declen + 1); if (FFlag::LuauSciNumberSkipTrailDot && exp[-1] == '.') exp--; return printexp(exp, dot - 1); } }