{-# OPTIONS --rewriting #-} module Properties.StrictMode where import Agda.Builtin.Equality.Rewrite open import Agda.Builtin.Equality using (_≡_; refl) open import FFI.Data.Maybe using (Maybe; just; nothing) open import Luau.Heap using (Heap; HeapValue; function_is_end; defn; alloc; ok; next; lookup-next) renaming (_≡_⊕_↦_ to _≡ᴴ_⊕_↦_; _[_] to _[_]ᴴ) open import Luau.StrictMode using (Warningᴱ; Warningᴮ; bot; disagree; addr; app₁; app₂; block; return; local₁) open import Luau.Substitution using (_[_/_]ᴮ; _[_/_]ᴱ) open import Luau.Syntax using (Expr; yes; var_∈_; _⟨_⟩∈_; _$_; addr; nil; function_is_end; block_is_end; done; return; local_←_; _∙_; fun; arg) open import Luau.Type using (Type; strict; nil; _⇒_; bot; tgt) open import Luau.TypeCheck(strict) using (_⊢ᴮ_∋_∈_⊣_; _⊢ᴱ_∋_∈_⊣_; nil; var; addr; app; function; block; done; return; local) open import Luau.Value using (val; nil; addr) open import Luau.Addr using (_≡ᴬ_) open import Luau.AddrCtxt using (AddrCtxt) open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_; ∅-[]) renaming (_[_] to _[_]ⱽ) open import Luau.VarCtxt using (VarCtxt; ∅) open import Properties.Remember using (remember; _,_) open import Properties.Equality using (sym; cong; trans; subst₁) open import Properties.Dec using (Dec; yes; no) open import Properties.Contradiction using (CONTRADICTION) open import Properties.TypeCheck(strict) using (typeOfᴴ; typeOfᴱ; typeOfᴮ; typeCheckᴱ; typeCheckᴮ) open import Luau.OpSem using (_⊢_⟶ᴮ_⊣_; _⊢_⟶ᴱ_⊣_; app; function; beta; return; block; done; local; subst) {-# REWRITE lookup-next #-} src = Luau.Type.src strict data _⊑_ (H : Heap yes) : Heap yes → Set where refl : (H ⊑ H) snoc : ∀ {H′ H″ a V} → (H ⊑ H′) → (H″ ≡ᴴ H′ ⊕ a ↦ V) → (H ⊑ H″) warning-⊑ : ∀ {H H′ Γ Δ S T M} {D : Γ ⊢ᴱ S ∋ M ∈ T ⊣ Δ} → (H ⊑ H′) → (Warningᴱ H′ D) → Warningᴱ H D warning-⊑ = {!!} data TypeOfᴱ-⊑-Result H H′ Γ M : Set where ok : (typeOfᴱ H Γ M ≡ typeOfᴱ H′ Γ M) → TypeOfᴱ-⊑-Result H H′ Γ M warning : (∀ {S} → Warningᴱ H (typeCheckᴱ H Γ S M)) → TypeOfᴱ-⊑-Result H H′ Γ M data TypeOfᴮ-⊑-Result H H′ Γ B : Set where ok : (typeOfᴮ H Γ B ≡ typeOfᴮ H′ Γ B) → TypeOfᴮ-⊑-Result H H′ Γ B warning : (∀ {S} → Warningᴮ H (typeCheckᴮ H Γ S B)) → TypeOfᴮ-⊑-Result H H′ Γ B typeOfᴱ-⊑ : ∀ {H H′ Γ M} → (H ⊑ H′) → (TypeOfᴱ-⊑-Result H H′ Γ M) typeOfᴱ-⊑ = {!!} typeOfᴮ-⊑ : ∀ {H H′ Γ B} → (H ⊑ H′) → (TypeOfᴮ-⊑-Result H H′ Γ B) typeOfᴮ-⊑ = {!!} blah : ∀ {H H′ Γ S S′ M} → (H ⊑ H′) → (S ≡ S′) → (Warningᴱ H′ (typeCheckᴱ H′ Γ S′ M)) → (Warningᴱ H (typeCheckᴱ H Γ S M)) blah = {!!} bloz : ∀ {H Γ S S′ M} → (S ≡ S′) → (Warningᴱ H (typeCheckᴱ H Γ S′ M)) → (Warningᴱ H (typeCheckᴱ H Γ S M)) bloz = {!!} redn-⊑ : ∀ {H H′ M M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → (H ⊑ H′) redn-⊑ = {!!} substitutivityᴱ : ∀ {Γ T H M v x} → (T ≡ typeOfᴱ H Γ (val v)) → (typeOfᴱ H (Γ ⊕ x ↦ T) M ≡ typeOfᴱ H Γ (M [ v / x ]ᴱ)) substitutivityᴮ : ∀ {Γ T H B v x} → (T ≡ typeOfᴱ H Γ (val v)) → (typeOfᴮ H (Γ ⊕ x ↦ T) B ≡ typeOfᴮ H Γ (B [ v / x ]ᴮ)) substitutivityᴱ = {!!} substitutivityᴮ = {!!} preservationᴱ : ∀ {H H′ M M′ Γ} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → (typeOfᴱ H Γ M ≡ typeOfᴱ H′ Γ M′) preservationᴮ : ∀ {H H′ B B′ Γ} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → (typeOfᴮ H Γ B ≡ typeOfᴮ H′ Γ B′) preservationᴱ (function {F = f ⟨ var x ∈ S ⟩∈ T} defn) = refl preservationᴱ (app s) = cong tgt (preservationᴱ s) preservationᴱ (beta {F = f ⟨ var x ∈ S ⟩∈ T} p) = trans (cong tgt (cong typeOfᴴ p)) {!!} preservationᴱ (block s) = preservationᴮ s preservationᴱ (return p) = refl preservationᴱ done = refl preservationᴮ (local {x = var x ∈ T} {B = B} s) with typeOfᴮ-⊑ {B = B} (redn-⊑ s) preservationᴮ (local {x = var x ∈ T} s) | ok p = p preservationᴮ (local {x = var x ∈ T} s) | warning W = {!!} preservationᴮ (subst {x = var x ∈ T} {B = B}) = substitutivityᴮ {B = B} {!!} preservationᴮ (function {F = f ⟨ var x ∈ S ⟩∈ T} {B = B} defn) with typeOfᴮ-⊑ {B = B} (snoc refl defn) preservationᴮ (function {F = f ⟨ var x ∈ S ⟩∈ T} {B = B} defn) | ok r = trans r (substitutivityᴮ {T = S ⇒ T} {B = B} refl) preservationᴮ (function {F = f ⟨ var x ∈ S ⟩∈ T} {B = B} defn) | warning W = {!!} preservationᴮ (return s) = preservationᴱ s reflectᴱ : ∀ {H H′ M M′ S} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → Warningᴱ H′ (typeCheckᴱ H′ ∅ S M′) → Warningᴱ H (typeCheckᴱ H ∅ S M) reflectᴮ : ∀ {H H′ B B′ S} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → Warningᴮ H′ (typeCheckᴮ H′ ∅ S B′) → Warningᴮ H (typeCheckᴮ H ∅ S B) reflectᴱ s W with redn-⊑ s reflectᴱ (function {F = f ⟨ var x ∈ S ⟩∈ T} defn) (addr a _ r) | p = CONTRADICTION (r refl) reflectᴱ (app s) (bot x) | p = {!x!} reflectᴱ (app s) (app₁ W) | p with typeOfᴱ-⊑ p reflectᴱ (app s) (app₁ W) | p | ok q = app₁ (bloz (cong (λ ∙ → ∙ ⇒ _) q) (reflectᴱ s W)) reflectᴱ (app s) (app₁ W) | p | warning W′ = app₂ W′ reflectᴱ (app s) (app₂ W) | p = app₂ (blah p (cong src (preservationᴱ s)) W) reflectᴱ (beta s) (bot x₁) | p = {!!} reflectᴱ (beta {F = f ⟨ var x ∈ T ⟩∈ U} q) (block _ (disagree x₁)) | p = {!!} reflectᴱ (beta {F = f ⟨ var x ∈ T ⟩∈ U} q) (block _ (local₁ W)) | p = app₂ (bloz (cong src (cong typeOfᴴ q)) W) reflectᴱ (block s) (bot x₁) | p = {!!} reflectᴱ (block s) (block b W) | p = block b (reflectᴮ s W) reflectᴱ (return q) W | p = block _ (return W) reflectᴱ done (bot x) | p = {!!} reflectᴮ s = {!!} -- reflectᴱ (function {F = f ⟨ var x ∈ S ⟩∈ T} defn) (bot ()) -- reflectᴱ (function defn) (addr a T q) = CONTRADICTION (q refl) -- reflectᴱ (app s) (bot x) = {!x!} -- reflectᴱ (app s) (app₁ W) = app₁ {!reflectᴱ s W!} -- reflectᴱ (app s) (app₂ W) = {!!} -- reflectᴱ (beta x) W = {!!} -- reflectᴱ (block x) W = {!!} -- reflectᴱ (return x) W = {!!} -- reflectᴱ done W = {!!} -- heap-miss : ∀ {Σ HV T} → (Σ ▷ HV ∈ T) → (HV ≡ nothing) → (T ≡ bot) -- heap-miss nothing refl = refl -- data ProgressResultᴱ {Σ Γ S M T Δ} (H : Heap yes) (D : Γ ⊢ᴱ S ∋ M ∈ T ⊣ Δ) : Set -- data ProgressResultᴮ {Σ Γ S B T Δ} (H : Heap yes) (D : Γ ⊢ᴮ S ∋ B ∈ T ⊣ Δ) : Set -- data ProgressResultᴱ {Σ Γ S M T Δ} H D where -- value : ∀ V → (M ≡ val V) → ProgressResultᴱ H D -- warning : (Warningᴱ Σ D) → ProgressResultᴱ H D -- step : ∀ {M′ H′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → ProgressResultᴱ H D -- data ProgressResultᴮ {Σ Γ S B T Δ} H D where -- done : (B ≡ done) → ProgressResultᴮ H D -- return : ∀ V {C} → (B ≡ (return (val V) ∙ C)) → ProgressResultᴮ H D -- warning : (Warningᴮ Σ D) → ProgressResultᴮ H D -- step : ∀ {B′ H′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → ProgressResultᴮ H D -- progressᴱ : ∀ {Σ Γ S M T Δ} H → (Σ ▷ H ✓) → (D : Σ ▷ Γ ⊢ᴱ S ∋ M ∈ T ⊣ Δ) → (Γ ≡ ∅) → ProgressResultᴱ H D -- progressᴮ : ∀ {Σ Γ S B T Δ} H → (Σ ▷ H ✓) → (D : Σ ▷ Γ ⊢ᴮ S ∋ B ∈ T ⊣ Δ) → (Γ ≡ ∅) → ProgressResultᴮ H D -- progressᴱ H h nil _ = value nil refl -- progressᴱ H h (var x p) refl = warning (bot p) -- progressᴱ H h (addr a refl) _ = value (addr a) refl -- progressᴱ H h (app D₁ D₂) p with progressᴱ H h D₁ p -- progressᴱ H h (app nil D₂) p | value nil refl = warning (bot refl) -- progressᴱ H h (app (var _ _) D₂) p | value nil () -- progressᴱ H h (app (app _ _) D₂) p | value nil () -- progressᴱ H h (app (function _) D₂) p | value nil () -- progressᴱ H h (app (block _ _) D₂) p | value nil () -- progressᴱ H h (app (addr _ refl) D₂) p | value (addr a) refl with remember(H [ a ]ᴴ) -- progressᴱ H h (app (addr _ refl) D₂) p | value (addr a) refl | (nothing , r) = warning (bot (cong tgt (heap-miss (h a) r))) -- progressᴱ H h (app (addr _ refl) D₂) p | value (addr a) refl | (just(function f ⟨ var x ∈ S ⟩∈ T is B end) , r) = step (beta r) -- progressᴱ H h (app D₁ D₂) p | warning W = warning (app₁ W) -- progressᴱ H h (app D₁ D₂) p | step S = step (app S) -- progressᴱ H h (function D) _ with alloc H _ -- progressᴱ H h (function D) _ | ok a H′ r = step (function r) -- progressᴱ H h (block b D) q with progressᴮ H h D q -- progressᴱ H h (block b D) q | done refl = step done -- progressᴱ H h (block b D) q | return V refl = step (return refl) -- progressᴱ H h (block b D) q | warning W = warning (block b W) -- progressᴱ H h (block b D) q | step S = step (block S) -- progressᴮ H h done q = done refl -- progressᴮ H h (return D₁ D₂) q with progressᴱ H h D₁ q -- progressᴮ H h (return D₁ D₂) q | value V refl = return V refl -- progressᴮ H h (return D₁ D₂) q | warning W = warning (return W) -- progressᴮ H h (return D₁ D₂) q | step S = step (return S) -- progressᴮ H h (local D₁ D₂) q with progressᴱ H h D₁ q -- progressᴮ H h (local D₁ D₂) q | value V refl = step subst -- progressᴮ H h (local D₁ D₂) q | warning W = warning (local₁ W) -- progressᴮ H h (local D₁ D₂) q | step S = step (local S) -- progressᴮ H h (function D₁ D₂) q with alloc H _ -- progressᴮ H h (function D₁ D₂) q | ok a H′ r = step (function r) import FFI.Data.Aeson {-# REWRITE FFI.Data.Aeson.singleton-insert-empty #-} _≡ᵀ_ : (T U : Type) → Dec (T ≡ U) _≡ᵀ_ = {!!} -- data LookupResult {Σ V S} (D : Σ ▷ V ∈ S) : Set where -- function : ∀ f {x B T U W} → -- (S ≡ (T ⇒ U)) → -- (V ≡ just(function f ⟨ var x ∈ T ⟩∈ U is B end)) → -- (Σ ▷ (x ↦ T) ⊢ᴮ U ∋ B ∈ U ⊣ (x ↦ W)) → -- LookupResult D -- warningᴴ : -- Warningᴴ(D) → -- LookupResult D -- lookup : ∀ {Σ V T} (D : Σ ▷ V ∈ T) → LookupResult D -- lookup nothing = warningᴴ nothing -- lookup (function f {U = U} {V = V} D) with U ≡ᵀ V -- lookup (function f D) | yes refl = function f refl refl D -- lookup (function f D) | no p = warningᴴ (function f (disagree p)) -- data PreservationResultᴮ {Σ S Δ T H B} (D : ∅ ⊢ᴮ S ∋ B ∈ T ⊣ Δ) M′ H′ : Set where -- ok : ∀ {Δ′} → (∅ ⊢ᴮ S ∋ M′ ∈ T ⊣ Δ′) → PreservationResultᴮ D M′ H′ -- warning : Warningᴮ Σ D → PreservationResultᴮ D M′ H′ -- data PreservationResultᴱ {Σ S Δ T M} (D : ∅ ⊢ᴱ S ∋ M ∈ T ⊣ Δ) M′ : Set where -- ok : ∀ {Δ′} → (∅ ⊢ᴱ S ∋ M′ ∈ T ⊣ Δ′) → PreservationResultᴱ D M′ H′ -- warning : Warningᴱ Σ D → PreservationResultᴱ D M′ H′ -- preservationᴱ : ∀ {Σ S Δ T H H′ M M′} → (D : ∅ ⊢ᴱ S ∋ M ∈ T ⊣ Δ) → (s : H ⊢ M ⟶ᴱ M′ ⊣ H′) → PreservationResultᴱ D M′ H′ -- preservationᴱ {S = S} {T = T} h D s with S ≡ᵀ T -- preservationᴱ h D s | no p = warning (disagree p) -- preservationᴱ h (app D₁ D₂) (app s) | yes refl with preservationᴱ h D₁ s -- preservationᴱ h (app D₁ D₂) (app s) | yes refl | ok h′ D₁′ = ok h′ (app D₁′ {!D₂!}) -- preservationᴱ h (app D₁ D₂) (app s) | yes refl | warning W = warning (app₁ W) -- -- preservationᴱ h (app (addr a p) D₂) (beta q) | yes refl with lookup (h a) -- -- preservationᴱ h (app (addr a p) D₂) (beta q) | yes refl | function f r₁ r₂ D₁ with trans p r₁ | trans (sym q) r₂ -- -- preservationᴱ h (app (addr a p) D₂) (beta q) | yes refl | function f r₁ r₂ D₁ | refl | refl = ok h (block f (local D₂ D₁)) -- -- preservationᴱ h (app (addr a p) D₂) (beta q) | yes refl | warningᴴ W = warningᴴ a W -- -- preservationᴱ h (app {T = T} {U = U} (addr a p) D₂) (beta q) with subst₂ (λ X Y → _ ▷ X ∈ Y) q (sym p) (h a) -- -- preservationᴱ {S = S} h (app {T = T} {U = U} (addr a p) D₂) (beta q) | function f {T = T′} {U = U′} {V = V′} D with S ≡ᵀ U′ | U′ ≡ᵀ V′ -- -- preservationᴱ h (app {T = T} {U = U} (addr a p) D₂) (beta q) | function f {T = T′} {U = U′} {V = V′} D | yes refl | yes refl = ok h (block _ (local D₂ D)) -- -- preservationᴱ h (app {T = T} {U = U} (addr a p) D₂) (beta q) | function f {T = T′} {U = U′} D | no r | _ = warningᴱ (disagree r) -- -- preservationᴱ h (app {T = T} {U = U} (addr a p) D₂) (beta q) | function f {T = T′} {U = U′} D | yes refl | no r = warningᴴ a {!function f (disagree r)!} -- (subst₁ Warningᴴ {!!} {!(function f (disagree r))!}) -- (function f (disagree r)) -- -- with src T ≡ᵀ U -- = ok h (block f (local {!D₂!} {!!})) -- -- preservationᴱ h (app {T = T} {U = U} D₁ D₂) (beta {F = f ⟨ var x ∈ _ ⟩∈ R} p) | yes refl = ok h (block f (local D₂ {!!})) -- with src T ≡ᵀ S -- = ok h (block f (local {!D₂!} {!!})) -- -- preservationᴱ h (app {T = T} {U = U} D₁ D₂) (beta {F = f ⟨ var x ∈ S ⟩∈ R} p) | no q = warning (app₀ {!q!}) -- with src T ≡ᵀ S -- = ok h (block f (local {!D₂!} {!!})) -- preservationᴱ h D s | yes refl = {!!} -- preservationᴱ h (function D) (function p) = {!x!} -- preservationᴱ h (block b D) (block s) = {!!} -- preservationᴱ h (block b D) (return p) = {!x!} -- preservationᴱ h (block b D) done = {!!}