open import Luau.Type using (Mode) module Luau.TypeCheck (m : Mode) where open import Agda.Builtin.Equality using (_≡_) open import FFI.Data.Maybe using (Maybe; just) open import Luau.Syntax using (Expr; Stat; Block; yes; nil; addr; var; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; name) open import Luau.Var using (Var) open import Luau.Addr using (Addr) open import Luau.Heap using (Heap; HeapValue; function_is_end) renaming (_[_] to _[_]ᴴ) open import Luau.Value using (addr; val) open import Luau.Type using (Type; Mode; nil; bot; top; _⇒_; tgt) open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ) open import FFI.Data.Vector using (Vector) open import FFI.Data.Maybe using (Maybe; just; nothing) src : Type → Type src = Luau.Type.src m data _⊢ᴮ_∋_∈_⊣_ : VarCtxt → Type → Block yes → Type → VarCtxt → Set data _⊢ᴱ_∋_∈_⊣_ : VarCtxt → Type → Expr yes → Type → VarCtxt → Set data _⊢ᴮ_∋_∈_⊣_ where done : ∀ {S Γ} → ---------------------- Γ ⊢ᴮ S ∋ done ∈ nil ⊣ ∅ return : ∀ {M B S T U Γ Δ₁ Δ₂} → Γ ⊢ᴱ S ∋ M ∈ T ⊣ Δ₁ → Γ ⊢ᴮ nil ∋ B ∈ U ⊣ Δ₂ → --------------------------------- Γ ⊢ᴮ S ∋ return M ∙ B ∈ T ⊣ Δ₁ local : ∀ {x M B S T U V Γ Δ₁ Δ₂} → Γ ⊢ᴱ T ∋ M ∈ U ⊣ Δ₁ → (Γ ⊕ x ↦ T) ⊢ᴮ S ∋ B ∈ V ⊣ Δ₂ → ---------------------------------------------------------- Γ ⊢ᴮ S ∋ local var x ∈ T ← M ∙ B ∈ V ⊣ (Δ₁ ⋒ (Δ₂ ⊝ x)) function : ∀ {f x B C S T U V W Γ Δ₁ Δ₂} → (Γ ⊕ x ↦ T) ⊢ᴮ U ∋ C ∈ V ⊣ Δ₁ → (Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ S ∋ B ∈ W ⊣ Δ₂ → --------------------------------------------------------------------------------- Γ ⊢ᴮ S ∋ function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B ∈ W ⊣ ((Δ₁ ⊝ x) ⋒ (Δ₂ ⊝ f)) data _⊢ᴱ_∋_∈_⊣_ where nil : ∀ {S Γ} → ---------------------- Γ ⊢ᴱ S ∋ nil ∈ nil ⊣ ∅ var : ∀ x {S T Γ} → T ≡ Γ [ x ]ⱽ → ---------------------------- Γ ⊢ᴱ S ∋ var x ∈ T ⊣ (x ↦ S) addr : ∀ a T {S Γ} → ------------------------- Γ ⊢ᴱ S ∋ (addr a) ∈ T ⊣ ∅ app : ∀ {M N S T U Γ Δ₁ Δ₂} → Γ ⊢ᴱ (U ⇒ S) ∋ M ∈ T ⊣ Δ₁ → Γ ⊢ᴱ (src T) ∋ N ∈ U ⊣ Δ₂ → -------------------------------------- Γ ⊢ᴱ S ∋ (M $ N) ∈ (tgt T) ⊣ (Δ₁ ⋒ Δ₂) function : ∀ {f x B S T U V Γ Δ} → (Γ ⊕ x ↦ T) ⊢ᴮ U ∋ B ∈ V ⊣ Δ → ----------------------------------------------------------------------- Γ ⊢ᴱ S ∋ (function f ⟨ var x ∈ T ⟩∈ U is B end) ∈ (T ⇒ U) ⊣ (Δ ⊝ x) block : ∀ b {B S T Γ Δ} → Γ ⊢ᴮ S ∋ B ∈ T ⊣ Δ → ---------------------------------------------------- Γ ⊢ᴱ S ∋ (block b is B end) ∈ T ⊣ Δ