
Towards an Unsound But Complete Type System
Work In Progress on New Non-Strict Mode for Luau

Lily Brown
Andy Friesen
Alan Jeffrey

Vighnesh Vijay
Roblox

San Mateo, CA, USA

Abstract
In HATRA 2021, we presented The Goals Of The Luau Type
System, describing the human factors of a type system for a
language with a heterogeneous developer community. One
of the goals was the design of type system for bug detection,
where we have high confidence that type errors identify gen-
uine software defects, and that false positives are minimized.
Such a type system is, by necessity, unsound, but we can
ask instead that it is complete. This paper presents a work-
in-progress report on the design and implementation of the
new unsound type system for Luau.

ACM Reference Format:
Lily Brown, Andy Friesen, Alan Jeffrey, and Vighnesh Vijay. 2024.
Towards an Unsound But Complete Type System: Work In Progress
on New Non-Strict Mode for Luau. In Incorrectness ’24: Formal
Methods for Incorrectness. ACM, New York, NY, USA, 3 pages.

1 Introduction
Luau [12] is the scripting language used by the Roblox [13]
platform for shared immersive experiences. Luau extends
the Lua [10] language, notably by providing type-driven
tooling such as autocomplete and API documentation (as
well as traditional type error reporting). Roblox has hundreds
of millions of users, and millions of creators, ranging from
children learning to program for the first time to professional
development studios.
In HATRA 2021, we presented a position paper on the

Goals Of The Luau Type System [1], describing the human fac-
tors issues with designing a type system for a languagewith a
heterogeneous developer community. The design flows from
the needs of the different communities: beginners are fo-
cused on immediate goals (“the stairs should light up when a
player walks on them”) and less on the code quality concerns
of more experienced developers; for all users type-driven
tooling is important for productivity. These needs result in a
design with two modes:

This work is licensed under a Creative Commons
Attribution 4.0 International License.

Incorrectness ’24, January 2024, London, UK
© 2024 Roblox.

• non-strict mode, aimed at non-professionals, which
minimizes false positives (that is, in non-strict mode,
any program with a type error has a defect), and

• strict mode, aimed at professionals, which minimizes
false negatives (that is, in strict mode, any program
with a defect has a type error).

The focus of this extended abstract is the design of non-strict
mode: what constitutes a defect, and how can we design a
complete type system for detecting them. (Thewords “sound”
and “complete” in this sense are far from ideal, but “sound
type system” has a well-established meaning, and “complete”
is well-established as the dual of “sound”, so here we are.)
The closest work to ours is success typing [9], used in

Erlang Dialyzer [8]. The new feature of our work is that
strict and non-strict mode have to interact, whereas Dialyzer
only has the equivalent of non-strict mode.
New non-strict mode is specified in a Luau Request For

Comment [7], and is currently being implemented.We expect
it (and other new type checking features) to be available
in 2024. This extended abstract is based on the RFC, but
written in “Greek letters and horizontal lines” rather than
“monospaced text”.

2 Code defects
The main goal of non-strict mode is to identify defects, but
this requires deciding what a defect is. Run-time errors are
an obvious defect:

local hi = "hi"
print(math.abs(hi))

but we also want to catch common mistakes such as mis-
spelling a property name, even though Luau returns nil for
missing property accesses. For this reason, we consider a
larger class of defects:

• run-time errors,
• expressions guaranteed to be nil, and
• writing to a table property that is never read.

2.1 Run-time errors
Run-time errors occur due to run-time type mismatches
(such as 5("hi")) or incorrect built-in function calls (such



Incorrectness ’24, January 2024, London, UK Lily Brown, Andy Friesen, Alan Jeffrey, and Vighnesh Vijay

as math.abs("hi")). Precisely identifying run-time errors
is undecidable, for example:

if cond() then
math.abs(“hi”)

end

We cannot be sure that this code produces a run-time error,
but we do know that if math.abs("hi") is executed, it will
produce an error, so we consider this to be a defect.

2.2 Expressions guaranteed to be nil
Luau tables do not error when a missing property is accessed
(though embeddings may). So

local t = { Foo = 5 }
local x = t.Fop

does not produce a run-time error, but is more likely than not
a programmer error. If the programmer intended to initialize
x as nil, they could have written x = nil. For this reason,
we consider it a code defect to use an expression that the
type system infers is of type nil, other than the nil literal.

2.3 Writing properties that are never read
There is a matching problem with misspelling properties
when writing. For example

function f()
local t = {}
t.Foo = 5
t.Fop = 7
print(t.Foo)

end

does not produce a run-time error, but is more likely than not
a programmer error, since t.Fop is written but never read.
We can use read-only and write-only table properties types
for this, and consider it an code defect to create a write-only
property.
We have to be careful about this though, because if f

ended with return t, then it would be a perfectly sensible
function with type () -> { Foo: number, Fop: number }.
The only way to detect that Fop was never read would be
whole-program analysis, which is prohibitively expensive.

3 New Non-strict error reporting
The difficult part of non-strict mode error-reporting is pre-
dicting run-time errors. We do this using an error-reporting
pass that synthesizes a type context such that if any of the
𝑥 : 𝑇 in the type context are satisfied, then the program will
produce a type error. For example in the program

function h(x, y)
math.abs(x)
string.lower(y)

end

an error is reportedwhen x isn’t a number, or y isn’t a string,
so the synthesized context is

x : ~number, y : ~string

(~T is Luau’s concrete syntax for type negation.) In:
function f(x)
math.abs(x)
string.lower(x)

end

an error is reported when x isn’t a number or isn’t a string,
so the context is

x : ~number | ~string

(T | U is Luau’s concrete syntax for type union.) Since the
type ~number | ~string is equivalent to the type unknown
(which contains every value), non-strict mode can report a
warning, since calling the function is guaranteed to throw a
run-time error. In contrast:

function g(x)
if cond() then

math.abs(x)
else

string.lower(x)
end

end

synthesizes context
x : ~number & ~string

(T & U is Luau’s concrete syntax for type intersection.) Since
~number & ~string is not equivalent to unknown, non-strict
mode reports no warning.
In Figure 1 we provide some of the inference rules for

context synthesis, and the warnings that it produces. These
are run after type inference, so they can assume that all code
is fully typed.
In the judgment Γ ⊢ 𝑀 : 𝑇 ⊣ Δ, the type context Γ is the

usual checked type context and Δ is the synthesized context
used to predict run-time errors (following the terminology
of bidirectional typing [5]).

Conjecture 3.1. If Γ ⊢ 𝑀 : 𝑇 ⊣ Δ, 𝑥 : 𝑈 and 𝜎 is a closing
substitution where 𝜎 (𝑥) : 𝑈 and𝑀 [𝜎] →∗ 𝑣 , then 𝑣 : 𝑇 .

Corollary 3.2. If Γ ⊢ 𝑀 : never ⊣ Δ, 𝑥 : unknown and 𝜎 is a
closing substitution, then𝑀 [𝜎] does not terminate successfully.

4 Checked functions
The crucial aspect of this type system is that we have a type
error inhabited by no values, and by expressions which may
throw a run-time exception. (This is essentially a very simple
type and effect system [11] with one effect.)
The rule for function application 𝑀 (𝑁 ) has two depen-

dencies on the type for𝑀 :

Γ ⊢ 𝑀 : (𝑆 → error)
Γ ⊢ 𝑀 : (unknown→ (𝑇 ∪ error))

Since Luau is based on semantic subtyping [4, 6] and supports
intersection types, this is equivalent to asking for 𝑀 to be



Towards an Unsound But Complete Type System Incorrectness ’24, January 2024, London, UK

Γ ⊢ 𝑀 : never ⊣ Δ1
Γ, 𝑥 : 𝑇 ⊢ 𝐵 ⊣ Δ2, 𝑥 : 𝑈
(warn if unknown <: 𝑈 )

Γ ⊢ (local𝑥 : 𝑇 = 𝑀 ;𝐵) ⊣ (Δ1 ∪ Δ2)

Γ ⊢ 𝑀 : never ⊣ Δ1
Γ ⊢ 𝐵 ⊣ Δ2
Γ ⊢ 𝐶 ⊣ Δ3

Γ ⊢ (if𝑀 then 𝐵 else𝐶 end) ⊣ (Δ1 ∪ (Δ2 ∩ Δ3))

Γ ⊢ 𝑥 : 𝑇 ⊣ (𝑥 : 𝑇 )
(warn if 𝑘 : 𝑇 )
Γ ⊢ 𝑘 : 𝑇 ⊣ ∅

Γ, 𝑥 : 𝑆 ⊢ 𝐵 ⊣ Δ, 𝑥 : 𝑈
(warn if unknown <: 𝑈 )
(warn if function <: 𝑇 )

Γ ⊢ (function(𝑥 : 𝑆)𝐵 end) : 𝑇 ⊣ Δ

Γ ⊢ 𝑀 : (𝑆 → error)
Γ ⊢ 𝑀 : ¬function ⊣ Δ1
Γ ⊢ 𝑁 : 𝑆 ⊣ Δ2
(warn if Γ ⊢ 𝑀 : (unknown→ (𝑇 ∪ error)))

Γ ⊢ 𝑀 (𝑁 ) : 𝑇 ⊣ Δ1 ∪ Δ2

Figure 1. Type context synthesis for blocks (Γ ⊢ 𝐵 ⊣ Δ) and expressions (Γ ⊢ 𝑀 : 𝑇 ⊣ Δ)

Γ ⊢ math.abs : (¬number→ error)

Γ ⊢ math.abs : ¬function ⊣ ∅

Γ ⊢ string.lower : (¬string→ error)
Γ ⊢ string.lower : ¬function ⊣ ∅
Γ ⊢ 𝑥 : ¬string ⊣ (𝑥 : ¬string)
(warn since Γ ⊢ string.lower : unknown→ (¬number ∪ error))

Γ ⊢ string.lower(𝑥) : ¬number ⊣ (𝑥 : ¬string)
Γ ⊢ (math.abs(string.lower(𝑥)) : never ⊣ (𝑥 : ¬string)

Figure 2. Example warning

an overloaded function, where one overload has argument
type unknown, and one has result type error. For example:

math.abs : (number→ number) ∩ (¬number→ error)
and so (by subsumption):

math.abs : (¬number→ error)
math.abs : (unknown→ (number ∪ error))

This is a common enough idiom it is worth naming it: we
call any function of type

(𝑆 →𝑇 ) ∩ (¬𝑆 → error)
a checked function, since it performs a run-time check on its
argument. They are called strong functions in Elixir [3].

Note that this type system has the usual subtyping rule for
functions: contravariant in their argument type, and covari-
ant in their result type. In contrast, checked functions are
invariant in their argument type, since one overload 𝑆 →𝑇

is contravariant in 𝑆 , and the other ¬𝑆 → error is covariant.
This system is also different from success typings [9],

which has functions (¬𝑆→error)∩(unknown→(𝑇 ∪error)),
in our system, which are covariant in both 𝑆 and 𝑇 .

5 Future work
This type system is still in the design phase [7], though we
hope the implementation will be ready by the end of 2023.
This will include testing the implementation on our unit
tests, and on large code bases.

There is an Agda development of a core of strict mode [2].
It should extend to non-strict mode, at which point Conjec-
ture 3.1 (or something like it) will be mechanically verified.

References
[1] L. Brown, A. Friesen, and A. S. A. Jeffrey. 2021. Position Paper: Goals of

the Luau Type System. In Proc. Human Aspects of Types and Reasoning
Assistants. https://asaj.org/papers/hatra21.pdf

[2] L. Brown and A. S. A. Jeffrey. 2023. Luau Prototype Typechecker.
https://github.com/luau-lang/agda-typeck

[3] G. Castagna, G. Duboc, and J. Valim. 2023. The Design Principles of
the Elixir Type System. https://doi.org/10.48550/arXiv.2306.06391.

[4] G. Castagna and A. Frisch. 2005. A Gentle Introduction to Semantic
Subtyping. In Proc. Principles and Practice of Declarative Programming.

[5] J. Dunfield and N. Krishnaswami. 2022. Bidirectional Typing. ACM
Comput. Surv. 54, 5, Article 98 (2022), 38 pages.

[6] A. S. A. Jeffrey. 2022. Semantic Subtyping in Luau. Roblox Technical
Blog. https://blog.roblox.com/2022/11/semantic-subtyping-luau/

[7] A. S. A. Jeffrey. 2023. RFC For New Non-strict Mode. Luau Request
For Comment. https://github.com/Roblox/luau/pull/1037.

[8] T. Lindahl and K. Sagonas. 2004. Detecting Software Defects in Telecom
Applications Through Lightweight Static Analysis: A War Story. In
Proc. Asian Symp. Programming Languages and Systems. 91–106.

[9] T. Lindahl and K. Sagonas. 2006. Practical Type Inference Based on
Success Typings. In Proc. Int. Conf. Principles and Practice of Declarative
Programming. 167–178.

[10] Lua.org and PUC-Rio. 2023. The Lua Programming Language. https:
//lua.org

[11] F. Nielson and H. R. Nielson. 1999. Type and Effect Systems. Springer,
114–136.

[12] Roblox. 2023. The Luau Programming Language. https://luau-lang.org
[13] Roblox. 2023. Reimagining the way people come together. https:

//corp.roblox.com

https://asaj.org/papers/hatra21.pdf
https://github.com/luau-lang/agda-typeck
https://doi.org/10.48550/arXiv.2306.06391
https://blog.roblox.com/2022/11/semantic-subtyping-luau/
https://github.com/Roblox/luau/pull/1037
https://lua.org
https://lua.org
https://luau-lang.org
https://corp.roblox.com
https://corp.roblox.com

	Abstract
	1 Introduction
	2 Code defects
	2.1 Run-time errors
	2.2 Expressions guaranteed to be nil
	2.3 Writing properties that are never read

	3 New Non-strict error reporting
	4 Checked functions
	5 Future work
	References

