module Properties.TypeCheck where open import Agda.Builtin.Equality using (_≡_; refl) open import FFI.Data.Maybe using (Maybe; just; nothing) open import FFI.Data.Either using (Either) open import Luau.TypeCheck using (_▷_⊢ᴱ_∋_∈_⊣_; _▷_⊢ᴮ_∋_∈_⊣_; nil; var; addr; app; function; block; done; return; local) open import Luau.Syntax using (Block; Expr; yes; nil; var; addr; _$_; function_is_end; block_is_end; _∙_; return; done; local_←_; _⟨_⟩; _⟨_⟩∈_; var_∈_; name; fun; arg) open import Luau.Type using (Type; nil; none; _⇒_; src; tgt) open import Luau.VarCtxt using (VarCtxt; ∅; _↦_; _⊕_↦_; _⋒_; _⊝_; ⊕-[]) renaming (_[_] to _[_]ⱽ) open import Luau.Addr using (Addr) open import Luau.Var using (Var; _≡ⱽ_) open import Luau.AddrCtxt using (AddrCtxt) renaming (_[_] to _[_]ᴬ) open import Properties.Dec using (yes; no) open import Properties.Equality using (_≢_; sym; trans; cong) open import Properties.Remember using (remember; _,_) typeOfᴱ : AddrCtxt → VarCtxt → (Expr yes) → Type typeOfᴮ : AddrCtxt → VarCtxt → (Block yes) → Type typeOfᴱ Σ Γ nil = nil typeOfᴱ Σ Γ (var x) = Γ [ x ]ⱽ typeOfᴱ Σ Γ (addr a) = Σ [ a ]ᴬ typeOfᴱ Σ Γ (M $ N) = tgt(typeOfᴱ Σ Γ M) typeOfᴱ Σ Γ (function f ⟨ var x ∈ S ⟩∈ T is B end) = S ⇒ T typeOfᴱ Σ Γ (block b is B end) = typeOfᴮ Σ Γ B typeOfᴮ Σ Γ (function f ⟨ var x ∈ S ⟩∈ T is C end ∙ B) = typeOfᴮ Σ (Γ ⊕ f ↦ (S ⇒ T)) B typeOfᴮ Σ Γ (local var x ∈ T ← M ∙ B) = typeOfᴮ Σ (Γ ⊕ x ↦ T) B typeOfᴮ Σ Γ (return M ∙ B) = typeOfᴱ Σ Γ M typeOfᴮ Σ Γ done = nil data TypeCheckResultᴱ (Σ : AddrCtxt) (Γ : VarCtxt) (S : Type) (M : Expr yes) : Set data TypeCheckResultᴮ (Σ : AddrCtxt) (Γ : VarCtxt) (S : Type) (B : Block yes) : Set data TypeCheckResultᴱ Σ Γ S M where ok : ∀ Δ → (Σ ▷ Γ ⊢ᴱ S ∋ M ∈ (typeOfᴱ Σ Γ M) ⊣ Δ) → TypeCheckResultᴱ Σ Γ S M data TypeCheckResultᴮ Σ Γ S B where ok : ∀ Δ → (Σ ▷ Γ ⊢ᴮ S ∋ B ∈ (typeOfᴮ Σ Γ B) ⊣ Δ) → TypeCheckResultᴮ Σ Γ S B typeCheckᴱ : ∀ Σ Γ S M → (TypeCheckResultᴱ Σ Γ S M) typeCheckᴮ : ∀ Σ Γ S B → (TypeCheckResultᴮ Σ Γ S B) typeCheckᴱ Σ Γ S nil = ok ∅ nil typeCheckᴱ Σ Γ S (var x) = ok (x ↦ S) (var x refl) typeCheckᴱ Σ Γ S (addr a) = ok ∅ (addr a refl) typeCheckᴱ Σ Γ S (M $ N) with typeCheckᴱ Σ Γ (typeOfᴱ Σ Γ N ⇒ S) M | typeCheckᴱ Σ Γ (src (typeOfᴱ Σ Γ M)) N typeCheckᴱ Σ Γ S (M $ N) | ok Δ₁ D₁ | ok Δ₂ D₂ = ok (Δ₁ ⋒ Δ₂) (app D₁ D₂) typeCheckᴱ Σ Γ S (function f ⟨ var x ∈ T ⟩∈ U is B end) with typeCheckᴮ Σ (Γ ⊕ x ↦ T) U B typeCheckᴱ Σ Γ S (function f ⟨ var x ∈ T ⟩∈ U is B end) | ok Δ D = ok (Δ ⊝ x) (function D) typeCheckᴱ Σ Γ S (block b is B end) with typeCheckᴮ Σ Γ S B typeCheckᴱ Σ Γ S block b is B end | ok Δ D = ok Δ (block D) typeCheckᴮ Σ Γ S (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) with typeCheckᴮ Σ (Γ ⊕ x ↦ T) U C | typeCheckᴮ Σ (Γ ⊕ f ↦ (T ⇒ U)) S B typeCheckᴮ Σ Γ S (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) | ok Δ₁ D₁ | ok Δ₂ D₂ = ok ((Δ₁ ⊝ x) ⋒ (Δ₂ ⊝ f)) (function D₁ D₂) typeCheckᴮ Σ Γ S (local var x ∈ T ← M ∙ B) with typeCheckᴱ Σ Γ T M | typeCheckᴮ Σ (Γ ⊕ x ↦ T) S B typeCheckᴮ Σ Γ S (local var x ∈ T ← M ∙ B) | ok Δ₁ D₁ | ok Δ₂ D₂ = ok (Δ₁ ⋒ (Δ₂ ⊝ x)) (local D₁ D₂) typeCheckᴮ Σ Γ S (return M ∙ B) with typeCheckᴱ Σ Γ S M typeCheckᴮ Σ Γ S (return M ∙ B) | ok Δ D = ok Δ (return D) typeCheckᴮ Σ Γ S done = ok ∅ done