// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details // This code is based on Lua 5.x implementation licensed under MIT License; see lua_LICENSE.txt for details #include "lvm.h" #include "lstate.h" #include "ltable.h" #include "lfunc.h" #include "lstring.h" #include "lgc.h" #include "lmem.h" #include "lbytecode.h" #include "lapi.h" #include // TODO: RAII deallocation doesn't work for longjmp builds if a memory error happens template struct TempBuffer { lua_State* L; T* data; size_t count; TempBuffer(lua_State* L, size_t count) : L(L) , data(luaM_newarray(L, count, T, 0)) , count(count) { } ~TempBuffer() { luaM_freearray(L, data, count, T, 0); } T& operator[](size_t index) { LUAU_ASSERT(index < count); return data[index]; } }; void luaV_getimport(lua_State* L, Table* env, TValue* k, StkId res, uint32_t id, bool propagatenil) { int count = id >> 30; LUAU_ASSERT(count > 0); int id0 = int(id >> 20) & 1023; int id1 = int(id >> 10) & 1023; int id2 = int(id) & 1023; // after the first call to luaV_gettable, res may be invalid, and env may (sometimes) be garbage collected // we take care to not use env again and to restore res before every consecutive use ptrdiff_t resp = savestack(L, res); // global lookup for id0 TValue g; sethvalue(L, &g, env); luaV_gettable(L, &g, &k[id0], res); // table lookup for id1 if (count < 2) return; res = restorestack(L, resp); if (!propagatenil || !ttisnil(res)) luaV_gettable(L, res, &k[id1], res); // table lookup for id2 if (count < 3) return; res = restorestack(L, resp); if (!propagatenil || !ttisnil(res)) luaV_gettable(L, res, &k[id2], res); } template static T read(const char* data, size_t size, size_t& offset) { T result; memcpy(&result, data + offset, sizeof(T)); offset += sizeof(T); return result; } static unsigned int readVarInt(const char* data, size_t size, size_t& offset) { unsigned int result = 0; unsigned int shift = 0; uint8_t byte; do { byte = read(data, size, offset); result |= (byte & 127) << shift; shift += 7; } while (byte & 128); return result; } static TString* readString(TempBuffer& strings, const char* data, size_t size, size_t& offset) { unsigned int id = readVarInt(data, size, offset); return id == 0 ? NULL : strings[id - 1]; } static void resolveImportSafe(lua_State* L, Table* env, TValue* k, uint32_t id) { struct ResolveImport { TValue* k; uint32_t id; static void run(lua_State* L, void* ud) { ResolveImport* self = static_cast(ud); // note: we call getimport with nil propagation which means that accesses to table chains like A.B.C will resolve in nil // this is technically not necessary but it reduces the number of exceptions when loading scripts that rely on getfenv/setfenv for global // injection // allocate a stack slot so that we can do table lookups luaD_checkstack(L, 1); setnilvalue(L->top); L->top++; luaV_getimport(L, L->gt, self->k, L->top - 1, self->id, /* propagatenil= */ true); } }; ResolveImport ri = {k, id}; if (L->gt->safeenv) { // luaD_pcall will make sure that if any C/Lua calls during import resolution fail, the thread state is restored back int oldTop = lua_gettop(L); int status = luaD_pcall(L, &ResolveImport::run, &ri, savestack(L, L->top), 0); LUAU_ASSERT(oldTop + 1 == lua_gettop(L)); // if an error occurred, luaD_pcall saves it on stack if (status != 0) { // replace error object with nil setnilvalue(L->top - 1); } } else { setnilvalue(L->top); L->top++; } } int luau_load(lua_State* L, const char* chunkname, const char* data, size_t size, int env) { size_t offset = 0; uint8_t version = read(data, size, offset); // 0 means the rest of the bytecode is the error message if (version == 0) { char chunkbuf[LUA_IDSIZE]; const char* chunkid = luaO_chunkid(chunkbuf, sizeof(chunkbuf), chunkname, strlen(chunkname)); lua_pushfstring(L, "%s%.*s", chunkid, int(size - offset), data + offset); return 1; } if (version < LBC_VERSION_MIN || version > LBC_VERSION_MAX) { char chunkbuf[LUA_IDSIZE]; const char* chunkid = luaO_chunkid(chunkbuf, sizeof(chunkbuf), chunkname, strlen(chunkname)); lua_pushfstring(L, "%s: bytecode version mismatch (expected [%d..%d], got %d)", chunkid, LBC_VERSION_MIN, LBC_VERSION_MAX, version); return 1; } // we will allocate a fair amount of memory so check GC before we do luaC_checkGC(L); // pause GC for the duration of deserialization - some objects we're creating aren't rooted // TODO: if an allocation error happens mid-load, we do not unpause GC! size_t GCthreshold = L->global->GCthreshold; L->global->GCthreshold = SIZE_MAX; // env is 0 for current environment and a stack index otherwise Table* envt = (env == 0) ? L->gt : hvalue(luaA_toobject(L, env)); TString* source = luaS_new(L, chunkname); uint8_t typesversion = 0; if (version >= 4) { typesversion = read(data, size, offset); } // string table unsigned int stringCount = readVarInt(data, size, offset); TempBuffer strings(L, stringCount); for (unsigned int i = 0; i < stringCount; ++i) { unsigned int length = readVarInt(data, size, offset); strings[i] = luaS_newlstr(L, data + offset, length); offset += length; } // proto table unsigned int protoCount = readVarInt(data, size, offset); TempBuffer protos(L, protoCount); for (unsigned int i = 0; i < protoCount; ++i) { Proto* p = luaF_newproto(L); p->source = source; p->bytecodeid = int(i); p->maxstacksize = read(data, size, offset); p->numparams = read(data, size, offset); p->nups = read(data, size, offset); p->is_vararg = read(data, size, offset); if (version >= 4) { p->flags = read(data, size, offset); uint32_t typesize = readVarInt(data, size, offset); if (typesize && typesversion == LBC_TYPE_VERSION) { uint8_t* types = (uint8_t*)data + offset; LUAU_ASSERT(typesize == unsigned(2 + p->numparams)); LUAU_ASSERT(types[0] == LBC_TYPE_FUNCTION); LUAU_ASSERT(types[1] == p->numparams); p->typeinfo = luaM_newarray(L, typesize, uint8_t, p->memcat); memcpy(p->typeinfo, types, typesize); } offset += typesize; } p->sizecode = readVarInt(data, size, offset); p->code = luaM_newarray(L, p->sizecode, Instruction, p->memcat); for (int j = 0; j < p->sizecode; ++j) p->code[j] = read(data, size, offset); p->codeentry = p->code; p->sizek = readVarInt(data, size, offset); p->k = luaM_newarray(L, p->sizek, TValue, p->memcat); #ifdef HARDMEMTESTS // this is redundant during normal runs, but resolveImportSafe can trigger GC checks under HARDMEMTESTS // because p->k isn't fully formed at this point, we pre-fill it with nil to make subsequent setup safe for (int j = 0; j < p->sizek; ++j) { setnilvalue(&p->k[j]); } #endif for (int j = 0; j < p->sizek; ++j) { switch (read(data, size, offset)) { case LBC_CONSTANT_NIL: setnilvalue(&p->k[j]); break; case LBC_CONSTANT_BOOLEAN: { uint8_t v = read(data, size, offset); setbvalue(&p->k[j], v); break; } case LBC_CONSTANT_NUMBER: { double v = read(data, size, offset); setnvalue(&p->k[j], v); break; } case LBC_CONSTANT_STRING: { TString* v = readString(strings, data, size, offset); setsvalue(L, &p->k[j], v); break; } case LBC_CONSTANT_IMPORT: { uint32_t iid = read(data, size, offset); resolveImportSafe(L, envt, p->k, iid); setobj(L, &p->k[j], L->top - 1); L->top--; break; } case LBC_CONSTANT_TABLE: { int keys = readVarInt(data, size, offset); Table* h = luaH_new(L, 0, keys); for (int i = 0; i < keys; ++i) { int key = readVarInt(data, size, offset); TValue* val = luaH_set(L, h, &p->k[key]); setnvalue(val, 0.0); } sethvalue(L, &p->k[j], h); break; } case LBC_CONSTANT_CLOSURE: { uint32_t fid = readVarInt(data, size, offset); Closure* cl = luaF_newLclosure(L, protos[fid]->nups, envt, protos[fid]); cl->preload = (cl->nupvalues > 0); setclvalue(L, &p->k[j], cl); break; } default: LUAU_ASSERT(!"Unexpected constant kind"); } } p->sizep = readVarInt(data, size, offset); p->p = luaM_newarray(L, p->sizep, Proto*, p->memcat); for (int j = 0; j < p->sizep; ++j) { uint32_t fid = readVarInt(data, size, offset); p->p[j] = protos[fid]; } p->linedefined = readVarInt(data, size, offset); p->debugname = readString(strings, data, size, offset); uint8_t lineinfo = read(data, size, offset); if (lineinfo) { p->linegaplog2 = read(data, size, offset); int intervals = ((p->sizecode - 1) >> p->linegaplog2) + 1; int absoffset = (p->sizecode + 3) & ~3; p->sizelineinfo = absoffset + intervals * sizeof(int); p->lineinfo = luaM_newarray(L, p->sizelineinfo, uint8_t, p->memcat); p->abslineinfo = (int*)(p->lineinfo + absoffset); uint8_t lastoffset = 0; for (int j = 0; j < p->sizecode; ++j) { lastoffset += read(data, size, offset); p->lineinfo[j] = lastoffset; } int lastline = 0; for (int j = 0; j < intervals; ++j) { lastline += read(data, size, offset); p->abslineinfo[j] = lastline; } } uint8_t debuginfo = read(data, size, offset); if (debuginfo) { p->sizelocvars = readVarInt(data, size, offset); p->locvars = luaM_newarray(L, p->sizelocvars, LocVar, p->memcat); for (int j = 0; j < p->sizelocvars; ++j) { p->locvars[j].varname = readString(strings, data, size, offset); p->locvars[j].startpc = readVarInt(data, size, offset); p->locvars[j].endpc = readVarInt(data, size, offset); p->locvars[j].reg = read(data, size, offset); } p->sizeupvalues = readVarInt(data, size, offset); p->upvalues = luaM_newarray(L, p->sizeupvalues, TString*, p->memcat); for (int j = 0; j < p->sizeupvalues; ++j) { p->upvalues[j] = readString(strings, data, size, offset); } } protos[i] = p; } // "main" proto is pushed to Lua stack uint32_t mainid = readVarInt(data, size, offset); Proto* main = protos[mainid]; luaC_threadbarrier(L); Closure* cl = luaF_newLclosure(L, 0, envt, main); setclvalue(L, L->top, cl); incr_top(L); L->global->GCthreshold = GCthreshold; return 0; }