diff --git a/prototyping/Properties/StrictMode.agda b/prototyping/Properties/StrictMode.agda index d7e0b2e5..af608df1 100644 --- a/prototyping/Properties/StrictMode.agda +++ b/prototyping/Properties/StrictMode.agda @@ -66,11 +66,8 @@ redn-⊑ = {!!} ⊕-swap : ∀ {Γ x y T U} → (x ≢ y) → ((Γ ⊕ x ↦ T) ⊕ y ↦ U) ≡ ((Γ ⊕ y ↦ U) ⊕ x ↦ T) ⊕-swap = {!!} -substitutivityᴱ : ∀ {Γ T H M v x} → (T ≡ typeOfᴱ H Γ (val v)) → (typeOfᴱ H (Γ ⊕ x ↦ T) M ≡ typeOfᴱ H Γ (M [ v / x ]ᴱ)) -substitutivityᴮ : ∀ {Γ T H B v x} → (T ≡ typeOfᴱ H Γ (val v)) → (typeOfᴮ H (Γ ⊕ x ↦ T) B ≡ typeOfᴮ H Γ (B [ v / x ]ᴮ)) - -substitutivityᴱ = {!!} -substitutivityᴮ = {!!} +⊕-lookup : ∀ {Γ x y T} → (x ≢ y) → ((Γ ⊕ x ↦ T) [ y ]ⱽ) ≡ (Γ [ y ]ⱽ) +⊕-lookup = {!!} heap-weakeningᴱ : ∀ {H H′ M Γ} → (H ⊑ H′) → OrWarningᴱ H (typeCheckᴱ H Γ M) (typeOfᴱ H Γ M ≡ typeOfᴱ H′ Γ M) heap-weakeningᴮ : ∀ {H H′ B Γ} → (H ⊑ H′) → OrWarningᴮ H (typeCheckᴮ H Γ B) (typeOfᴮ H Γ B ≡ typeOfᴮ H′ Γ B) @@ -78,6 +75,18 @@ heap-weakeningᴮ : ∀ {H H′ B Γ} → (H ⊑ H′) → OrWarningᴮ H (typeC heap-weakeningᴱ = {!!} heap-weakeningᴮ = {!!} +bot-not-obj : ∀ O → bot ≢ typeOfᴼ O +bot-not-obj (function f ⟨ var x ∈ T ⟩∈ U is B end) () + +typeOf-val-not-bot : ∀ {H Γ} v → OrWarningᴱ H (typeCheckᴱ H Γ (val v)) (bot ≢ typeOfᴱ H Γ (val v)) +typeOf-val-not-bot = {!!} + +substitutivityᴱ : ∀ {Γ T H} M v x → (just T ≡ typeOfⱽ H v) → (typeOfᴱ H (Γ ⊕ x ↦ T) M ≡ typeOfᴱ H Γ (M [ v / x ]ᴱ)) +substitutivityᴮ : ∀ {Γ T H} B v x → (just T ≡ typeOfⱽ H v) → (typeOfᴮ H (Γ ⊕ x ↦ T) B ≡ typeOfᴮ H Γ (B [ v / x ]ᴮ)) + +substitutivityᴱ = {!!} +substitutivityᴮ = {!!} + preservationᴱ : ∀ {H H′ M M′ Γ} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → OrWarningᴱ H (typeCheckᴱ H Γ M) (typeOfᴱ H Γ M ≡ typeOfᴱ H′ Γ M′) preservationᴮ : ∀ {H H′ B B′ Γ} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → OrWarningᴮ H (typeCheckᴮ H Γ B) (typeOfᴮ H Γ B ≡ typeOfᴮ H′ Γ B′) @@ -85,7 +94,7 @@ preservationᴱ (function {F = f ⟨ var x ∈ S ⟩∈ T} defn) = ok refl preservationᴱ (app s) with preservationᴱ s preservationᴱ (app s) | ok p = ok (cong tgt p) preservationᴱ (app s) | warning W = warning (app₁ W) -preservationᴱ (beta {F = f ⟨ var x ∈ S ⟩∈ T} p) = {!!} -- ok (trans (cong tgt (cong typeOfᴴ p)) {!!}) +preservationᴱ (beta {F = f ⟨ var x ∈ S ⟩∈ T} p) = ok (trans (cong tgt (cong orBot (cong typeOfᴹᴼ p))) {!!}) preservationᴱ (block s) with preservationᴮ s preservationᴱ (block s) | ok p = ok p preservationᴱ (block {b = b} s) | warning W = warning (block b W) @@ -95,51 +104,64 @@ preservationᴱ done = ok refl preservationᴮ (local {x = var x ∈ T} s) with heap-weakeningᴮ (redn-⊑ s) preservationᴮ (local {x = var x ∈ T} s) | ok p = ok p preservationᴮ (local {x = var x ∈ T} s) | warning W = warning (local₂ W) -preservationᴮ (subst {x = var x ∈ T} {B = B}) = ok (substitutivityᴮ {B = B} {!!}) +preservationᴮ {H = H} (subst {v = v}) with remember (typeOfⱽ H v) +preservationᴮ (subst {x = var x ∈ T} {v = v} {B = B}) | (just U , p) with T ≡ᵀ U +preservationᴮ (subst {x = var x ∈ T} {v = v} {B = B}) | (just T , p) | yes refl = ok (substitutivityᴮ B v x (sym p)) +preservationᴮ (subst {x = var x ∈ T} {v = v} {B = B}) | (just U , p) | no q = warning (local₀ (λ r → q (trans r (trans (typeOfᴱⱽ v) (cong orBot p))))) +preservationᴮ (subst {x = var x ∈ T} {v = v}) | (nothing , p) with typeOf-val-not-bot v +preservationᴮ (subst {x = var x ∈ T} {v = v}) | (nothing , p) | ok q = CONTRADICTION (q (sym (trans (typeOfᴱⱽ v) (cong orBot p)))) +preservationᴮ (subst {x = var x ∈ T} {v = v}) | (nothing , p) | warning W = warning (local₁ W) preservationᴮ (function {F = f ⟨ var x ∈ S ⟩∈ T} {B = B} defn) with heap-weakeningᴮ (snoc refl defn) -preservationᴮ (function {F = f ⟨ var x ∈ S ⟩∈ T} {B = B} defn) | ok r = ok (trans r (substitutivityᴮ {T = S ⇒ T} {B = B} refl)) +preservationᴮ (function {a = a} {F = f ⟨ var x ∈ S ⟩∈ T} {B = B} defn) | ok r = ok (trans r (substitutivityᴮ {T = S ⇒ T} B (addr a) f refl)) preservationᴮ (function {F = f ⟨ var x ∈ S ⟩∈ T} {B = B} defn) | warning W = warning (function₂ f W) preservationᴮ (return s) with preservationᴱ s preservationᴮ (return s) | ok p = ok p preservationᴮ (return s) | warning W = warning (return W) -reflect-substitutionᴱ : ∀ {H Γ Γ′ T} M v x → (just T ≡ typeOfⱽ H v) → (Γ′ ≡ Γ ⊕ x ↦ T) → Warningᴱ H (typeCheckᴱ H Γ (M [ v / x ]ᴱ)) → Warningᴱ H (typeCheckᴱ H Γ′ M) -reflect-substitutionᴱ-whenever-yes : ∀ {H Γ Γ′ T} v x y (p : x ≡ y) → (typeOfᴱ H Γ (val v) ≡ T) → (Γ′ ≡ Γ ⊕ x ↦ T) → Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever yes p)) → Warningᴱ H (typeCheckᴱ H Γ′ (var y)) -reflect-substitutionᴱ-whenever-no : ∀ {H Γ Γ′ T} v x y (p : x ≢ y) → (typeOfᴱ H Γ (val v) ≡ T) → (Γ′ ≡ Γ ⊕ x ↦ T) → Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever no p)) → Warningᴱ H (typeCheckᴱ H Γ′ (var y)) -reflect-substitutionᴮ : ∀ {H Γ Γ′ T} B v x → (just T ≡ typeOfⱽ H v) → (Γ′ ≡ Γ ⊕ x ↦ T) → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮ)) → Warningᴮ H (typeCheckᴮ H Γ′ B) +reflect-substitutionᴱ : ∀ {H Γ T} M v x → (just T ≡ typeOfⱽ H v) → Warningᴱ H (typeCheckᴱ H Γ (M [ v / x ]ᴱ)) → Warningᴱ H (typeCheckᴱ H (Γ ⊕ x ↦ T) M) +reflect-substitutionᴱ-whenever-yes : ∀ {H Γ T} v x y (p : x ≡ y) → (just T ≡ typeOfⱽ H v) → Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever yes p)) → Warningᴱ H (typeCheckᴱ H (Γ ⊕ x ↦ T) (var y)) +reflect-substitutionᴱ-whenever-no : ∀ {H Γ T} v x y (p : x ≢ y) → (just T ≡ typeOfⱽ H v) → Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever no p)) → Warningᴱ H (typeCheckᴱ H (Γ ⊕ x ↦ T) (var y)) +reflect-substitutionᴮ : ∀ {H Γ T} B v x → (just T ≡ typeOfⱽ H v) → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮ)) → Warningᴮ H (typeCheckᴮ H (Γ ⊕ x ↦ T) B) reflect-substitutionᴮ-unless-yes : ∀ {H Γ Γ′ T} B v x y (r : x ≡ y) → (just T ≡ typeOfⱽ H v) → (Γ′ ≡ Γ) → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless yes r)) → Warningᴮ H (typeCheckᴮ H Γ′ B) +reflect-substitutionᴮ-unless-no : ∀ {H Γ Γ′ T} B v x y (r : x ≢ y) → (just T ≡ typeOfⱽ H v) → (Γ′ ≡ Γ ⊕ x ↦ T) → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless no r)) → Warningᴮ H (typeCheckᴮ H Γ′ B) -reflect-substitutionᴱ (var y) v x p q W with x ≡ⱽ y -reflect-substitutionᴱ (var y) v x p q W | yes r = {!!} -- reflect-substitutionᴱ-whenever-yes v x y r (typeOfᴱⱽ v) p q W -reflect-substitutionᴱ (var y) v x p q W | no r = {!!} -- reflect-substitutionᴱ-whenever-no v x y r (typeOfᴱⱽ v) p q W -reflect-substitutionᴱ (addr a) v x p q (UnallocatedAddress a r) = UnallocatedAddress a r -reflect-substitutionᴱ (M $ N) v x p q (app₀ r) = {!!} -reflect-substitutionᴱ (M $ N) v x p q (app₁ W) = app₁ (reflect-substitutionᴱ M v x p q W) -reflect-substitutionᴱ (M $ N) v x p q (app₂ W) = app₂ (reflect-substitutionᴱ N v x p q W) -reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p q (function₀ f r) = {!!} -reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p refl (function₁ f W) with (x ≡ⱽ y) -reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p refl (function₁ f W) | yes r = function₁ f (reflect-substitutionᴮ-unless-yes B v x y r p (⊕-overwrite r) W) -reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p refl (function₁ f W) | no r = function₁ f (reflect-substitutionᴮ B v x p (⊕-swap r) W) -reflect-substitutionᴱ (block b is B end) v x p q (block b W) = block b (reflect-substitutionᴮ B v x p q W) +reflect-substitutionᴱ (var y) v x p W with x ≡ⱽ y +reflect-substitutionᴱ (var y) v x p W | yes r = reflect-substitutionᴱ-whenever-yes v x y r p W +reflect-substitutionᴱ (var y) v x p W | no r = reflect-substitutionᴱ-whenever-no v x y r p W +reflect-substitutionᴱ (addr a) v x p (UnallocatedAddress a r) = UnallocatedAddress a r +reflect-substitutionᴱ (M $ N) v x p (app₀ q) = app₀ (λ s → q (trans (cong src (sym (substitutivityᴱ M v x p))) (trans s (substitutivityᴱ N v x p)))) +reflect-substitutionᴱ (M $ N) v x p (app₁ W) = app₁ (reflect-substitutionᴱ M v x p W) +reflect-substitutionᴱ (M $ N) v x p (app₂ W) = app₂ (reflect-substitutionᴱ N v x p W) +reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₀ f q) with (x ≡ⱽ y) +reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₀ f q) | yes r = function₀ f (λ s → q (trans s {!!})) +reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₀ f q) | no r = function₀ f (λ s → q (trans s {!!})) +reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ f W) with (x ≡ⱽ y) +reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ f W) | yes r = function₁ f (reflect-substitutionᴮ-unless-yes B v x y r p (⊕-overwrite r) W) +reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ f W) | no r = function₁ f (reflect-substitutionᴮ-unless-no B v x y r p (⊕-swap r) W) +reflect-substitutionᴱ (block b is B end) v x p (block b W) = block b (reflect-substitutionᴮ B v x p W) -reflect-substitutionᴱ-whenever-no v x y r refl refl (UnboundVariable y p) = UnboundVariable y {!!} -reflect-substitutionᴱ-whenever-yes (addr a) x x refl refl refl (UnallocatedAddress a p) = {!!} +reflect-substitutionᴱ-whenever-no v x y p q (UnboundVariable y r) = UnboundVariable y (trans (⊕-lookup p) r) +reflect-substitutionᴱ-whenever-yes (addr a) x x refl p (UnallocatedAddress a q) with trans p (cong typeOfᴹᴼ q) +reflect-substitutionᴱ-whenever-yes (addr a) x x refl p (UnallocatedAddress a q) | () -reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p q (function₀ f r) = {!!} -reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p q (function₁ f W) with (x ≡ⱽ y) -reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p refl (function₁ f W) | yes r = function₁ f (reflect-substitutionᴮ-unless-yes C v x y r p (⊕-overwrite r) W) -reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p refl (function₁ f W) | no r = function₁ f (reflect-substitutionᴮ C v x p (⊕-swap r) W) -reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p q (function₂ f W) with (x ≡ⱽ f) -reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p refl (function₂ f W)| yes r = function₂ f (reflect-substitutionᴮ-unless-yes B v x f r p (⊕-overwrite r) W) -reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p refl (function₂ f W)| no r = function₂ f (reflect-substitutionᴮ B v x p (⊕-swap r) W) -reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p q (local₀ r) = {!!} -reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p q (local₁ W) = local₁ (reflect-substitutionᴱ M v x p q W) -reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p q (local₂ W) with (x ≡ⱽ y) -reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p refl (local₂ W) | yes r = local₂ (reflect-substitutionᴮ-unless-yes B v x y r p (⊕-overwrite r) W) -reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p refl (local₂ W) | no r = local₂ (reflect-substitutionᴮ B v x p (⊕-swap r) W) -reflect-substitutionᴮ (return M ∙ B) v x p q (return W) = return (reflect-substitutionᴱ M v x p q W) +reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₀ f q) with (x ≡ⱽ y) +reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₀ f q) | yes r = function₀ f (λ s → q (trans s {!substitutivityᴮ C v x!})) +reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₀ f q) | no r = function₀ f (λ s → q (trans s {!substitutivityᴮ C v x!})) +reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ f W) with (x ≡ⱽ y) +reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ f W) | yes r = function₁ f (reflect-substitutionᴮ-unless-yes C v x y r p (⊕-overwrite r) W) +reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ f W) | no r = function₁ f (reflect-substitutionᴮ-unless-no C v x y r p (⊕-swap r) W) +reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₂ f W) with (x ≡ⱽ f) +reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₂ f W)| yes r = function₂ f (reflect-substitutionᴮ-unless-yes B v x f r p (⊕-overwrite r) W) +reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₂ f W)| no r = function₂ f (reflect-substitutionᴮ-unless-no B v x f r p (⊕-swap r) W) +reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p (local₀ q) = local₀ (λ r → q (trans r (substitutivityᴱ M v x p))) +reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p (local₁ W) = local₁ (reflect-substitutionᴱ M v x p W) +reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p (local₂ W) with (x ≡ⱽ y) +reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p (local₂ W) | yes r = local₂ (reflect-substitutionᴮ-unless-yes B v x y r p (⊕-overwrite r) W) +reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p (local₂ W) | no r = local₂ (reflect-substitutionᴮ-unless-no B v x y r p (⊕-swap r) W) +reflect-substitutionᴮ (return M ∙ B) v x p (return W) = return (reflect-substitutionᴱ M v x p W) reflect-substitutionᴮ-unless-yes B v x y r p refl W = W +reflect-substitutionᴮ-unless-no B v x y r p refl W = reflect-substitutionᴮ B v x p W reflect-weakeningᴱ : ∀ {H H′ Γ M} → (H ⊑ H′) → Warningᴱ H′ (typeCheckᴱ H′ Γ M) → Warningᴱ H (typeCheckᴱ H Γ M) reflect-weakeningᴮ : ∀ {H H′ Γ B} → (H ⊑ H′) → Warningᴮ H′ (typeCheckᴮ H′ Γ B) → Warningᴮ H (typeCheckᴮ H Γ B) @@ -204,12 +226,12 @@ reflectᴮ (local s) (local₁ W′) | heap W = heap W reflectᴮ (local s) (local₁ W′) | expr W = block (local₁ W) reflectᴮ (local s) (local₂ W′) = block (local₂ (reflect-weakeningᴮ (redn-⊑ s) W′)) reflectᴮ (subst {H = H} {x = var x ∈ T} {v = v}) W with just T ≡ᴹᵀ typeOfⱽ H v -reflectᴮ (subst {H = H} {x = var x ∈ T} {v = v}) W | yes p = block (local₂ (reflect-substitutionᴮ _ v x p refl W)) +reflectᴮ (subst {H = H} {x = var x ∈ T} {v = v}) W | yes p = block (local₂ (reflect-substitutionᴮ _ v x p W)) reflectᴮ (subst {H = H} {x = var x ∈ T} {v = nil}) W | no p = block (local₀ λ r → p (cong just r)) reflectᴮ (subst {H = H} {x = var x ∈ T} {v = addr a}) W | no p with remember(H [ a ]ᴴ) reflectᴮ (subst {H = H} {x = var x ∈ T} {v = addr a}) W | no p | (nothing , q) = block (local₁ (UnallocatedAddress a q)) reflectᴮ (subst {H = H} {x = var x ∈ T} {v = addr a}) W | no p | (just O , q) = block (local₀ (λ r → p (trans (cong just (trans r (cong orBot (cong typeOfᴹᴼ q)))) (cong typeOfᴹᴼ (sym q))))) -reflectᴮ (function {F = f ⟨ var x ∈ S ⟩∈ T} defn) W = block (function₂ f (reflect-weakeningᴮ (snoc refl defn) (reflect-substitutionᴮ _ _ f refl refl W))) +reflectᴮ (function {F = f ⟨ var x ∈ S ⟩∈ T} defn) W = block (function₂ f (reflect-weakeningᴮ (snoc refl defn) (reflect-substitutionᴮ _ _ f refl W))) reflectᴮ (return s) (return W′) with reflectᴱ s W′ reflectᴮ (return s) (return W′) | heap W = heap W reflectᴮ (return s) (return W′) | expr W = block (return W) @@ -253,16 +275,12 @@ reflect* : ∀ {H H′ B B′} → (H ⊢ B ⟶* B′ ⊣ H′) → Warningᴴ reflect* refl W = W reflect* (step s t) W = reflectᴴᴮ s (reflect* t W) -bot-not-obj : ∀ O → bot ≢ typeOfᴼ O -bot-not-obj (function f ⟨ var x ∈ T ⟩∈ U is B end) () - runtimeWarningᴱ : ∀ {H M} → RuntimeErrorᴱ H M → Warningᴱ H (typeCheckᴱ H ∅ M) runtimeWarningᴮ : ∀ {H B} → RuntimeErrorᴮ H B → Warningᴮ H (typeCheckᴮ H ∅ B) -runtimeWarningᴱ (NilIsNotAFunction {V = nil}) = (app₀ (λ ())) -runtimeWarningᴱ {H} (NilIsNotAFunction {addr a}) with remember (H [ a ]ᴴ) -runtimeWarningᴱ (NilIsNotAFunction {addr a}) | (nothing , p) = app₂ (UnallocatedAddress a p) -runtimeWarningᴱ (NilIsNotAFunction {addr a}) | (just O , p) = app₀ λ r → bot-not-obj O (trans r (cong orBot (cong typeOfᴹᴼ p))) +runtimeWarningᴱ (NilIsNotAFunction {V = V}) with typeOf-val-not-bot V +runtimeWarningᴱ (NilIsNotAFunction) | ok p = app₀ p +runtimeWarningᴱ (NilIsNotAFunction) | warning W = app₂ W runtimeWarningᴱ (UnboundVariable x) = UnboundVariable x refl runtimeWarningᴱ (SEGV a p) = UnallocatedAddress a p runtimeWarningᴱ (app err) = app₁ (runtimeWarningᴱ err)