diff --git a/prototyping/Luau/OverloadedFunctions.agda b/prototyping/Luau/OverloadedFunctions.agda index 69620450..c9167e08 100644 --- a/prototyping/Luau/OverloadedFunctions.agda +++ b/prototyping/Luau/OverloadedFunctions.agda @@ -2,7 +2,7 @@ open import FFI.Data.Either using (Either; Left; Right) open import Luau.Type using (Type; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_; src) -open import Properties.Subtyping using (dec-subtyping) +open import Properties.DecSubtyping using (dec-subtyping) module Luau.OverloadedFunctions where diff --git a/prototyping/Properties.agda b/prototyping/Properties.agda index 5594812e..154e90c9 100644 --- a/prototyping/Properties.agda +++ b/prototyping/Properties.agda @@ -6,6 +6,7 @@ import Properties.Contradiction import Properties.Dec import Properties.Equality import Properties.Functions +import Properties.OverloadedFunctions import Properties.Remember import Properties.Step import Properties.StrictMode diff --git a/prototyping/Properties/OverloadedFunctions.agda b/prototyping/Properties/OverloadedFunctions.agda index b8c0efb2..2ba21e80 100644 --- a/prototyping/Properties/OverloadedFunctions.agda +++ b/prototyping/Properties/OverloadedFunctions.agda @@ -6,7 +6,9 @@ open import FFI.Data.Either using (Either; Left; Right) open import Luau.OverloadedFunctions using (resolve) open import Luau.Subtyping using (_<:_; _≮:_) open import Luau.Type using (Type; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_; src) -open import Properties.Subtyping using (dec-subtyping) +open import Properties.Contradiction using (CONTRADICTION) +open import Properties.DecSubtyping using (dec-subtyping) +open import Properties.Subtyping using (<:-refl; <:-trans; <:-union; <:-∪-left; <:-∪-right; <:-∪-lub; <:-intersect; <:-∩-left; <:-∩-right; <:-∩-glb; <:-impl-¬≮:; <:-function; <:-never; <:-never-left; <:-never-right; <:-function-∩; <:-function-∩-∪; <:-∩-dist-∪) -- Function overload resolution respects subtyping @@ -18,9 +20,9 @@ resolve-<: unknown p = <:-refl resolve-<: boolean p = <:-refl resolve-<: number p = <:-refl resolve-<: string p = <:-refl -resolve-<: (F ∪ G) p = ∪-<: (resolve-<: F p) (resolve-<: G p) +resolve-<: (F ∪ G) p = <:-union (resolve-<: F p) (resolve-<: G p) resolve-<: (F ∩ G) {S} {T} p with dec-subtyping S (src F) | dec-subtyping S (src G) | dec-subtyping T (src F) | dec-subtyping T (src G) -resolve-<: (F ∩ G) {S} {T} p | Left q₁ | Left q₂ | Left q₃ | Left q₄ = ∪-<: (resolve-<: F p) (resolve-<: G p) +resolve-<: (F ∩ G) {S} {T} p | Left q₁ | Left q₂ | Left q₃ | Left q₄ = <:-union (resolve-<: F p) (resolve-<: G p) resolve-<: (F ∩ G) {S} {T} p | _ | Left q₂ | _ | Right q₄ = CONTRADICTION (<:-impl-¬≮: (<:-trans p q₄) q₂) resolve-<: (F ∩ G) {S} {T} p | Left q₁ | _ | Right q₃ | _ = CONTRADICTION (<:-impl-¬≮: (<:-trans p q₃) q₁) resolve-<: (F ∩ G) {S} {T} p | Left q₁ | Right q₂ | Left q₃ | Left q₄ = <:-trans (resolve-<: G p) <:-∪-right @@ -30,20 +32,20 @@ resolve-<: (F ∩ G) {S} {T} p | Right q₁ | Left q₂ | Right q₃ | Left q resolve-<: (F ∩ G) {S} {T} p | Right q₁ | Right q₂ | Left q₃ | Left q₄ = <:-trans <:-∩-left (<:-trans (resolve-<: F p) <:-∪-left) resolve-<: (F ∩ G) {S} {T} p | Right q₁ | Right q₂ | Left q₃ | Right q₄ = <:-trans <:-∩-right (resolve-<: G p) resolve-<: (F ∩ G) {S} {T} p | Right q₁ | Right q₂ | Right q₃ | Left q₄ = <:-trans <:-∩-left (resolve-<: F p) -resolve-<: (F ∩ G) {S} {T} p | Right q₁ | Right q₂ | Right q₃ | Right q₄ = ∩-<: (resolve-<: F p) (resolve-<: G p) +resolve-<: (F ∩ G) {S} {T} p | Right q₁ | Right q₂ | Right q₃ | Right q₄ = <:-intersect (resolve-<: F p) (resolve-<: G p) -- A function type is a subtype of any of its overloadings resolve-intro : ∀ F V → (V ≮: never) → (V <: src F) → F <: (V ⇒ resolve F V) resolve-intro nil V p₁ p₂ = CONTRADICTION (<:-impl-¬≮: p₂ p₁) -resolve-intro (S ⇒ T) V p₁ p₂ = function-<: p₂ <:-refl +resolve-intro (S ⇒ T) V p₁ p₂ = <:-function p₂ <:-refl resolve-intro never V p₁ p₂ = <:-never resolve-intro unknown V p₁ p₂ = CONTRADICTION (<:-impl-¬≮: p₂ p₁) resolve-intro boolean V p₁ p₂ = CONTRADICTION (<:-impl-¬≮: p₂ p₁) resolve-intro number V p₁ p₂ = CONTRADICTION (<:-impl-¬≮: p₂ p₁) resolve-intro string V p₁ p₂ = CONTRADICTION (<:-impl-¬≮: p₂ p₁) -resolve-intro (F ∪ G) V p₁ p₂ = <:-∪-lub (<:-trans (resolve-intro F V p₁ (<:-trans p₂ <:-∩-left)) (function-<: <:-refl <:-∪-left)) (<:-trans (resolve-intro G V p₁ (<:-trans p₂ <:-∩-right)) (function-<: <:-refl <:-∪-right)) +resolve-intro (F ∪ G) V p₁ p₂ = <:-∪-lub (<:-trans (resolve-intro F V p₁ (<:-trans p₂ <:-∩-left)) (<:-function <:-refl <:-∪-left)) (<:-trans (resolve-intro G V p₁ (<:-trans p₂ <:-∩-right)) (<:-function <:-refl <:-∪-right)) resolve-intro (F ∩ G) V p₁ p₂ with dec-subtyping V (src F) | dec-subtyping V (src G) -resolve-intro (F ∩ G) V p₁ p₂ | Left q₁ | Left q₂ = <:-trans (∩-<: (resolve-intro F (V ∩ src F) (<:-never-right p₂ q₂) <:-∩-right) ((resolve-intro G (V ∩ src G) (<:-never-left p₂ q₁) <:-∩-right))) (<:-trans function-∩-∪-<: (function-<: (<:-trans (<:-∩-glb <:-refl p₂) <:-∩-dist-∪) (∪-<: (resolve-<: F <:-∩-left) (resolve-<: G <:-∩-left)))) +resolve-intro (F ∩ G) V p₁ p₂ | Left q₁ | Left q₂ = <:-trans (<:-intersect (resolve-intro F (V ∩ src F) (<:-never-right p₂ q₂) <:-∩-right) ((resolve-intro G (V ∩ src G) (<:-never-left p₂ q₁) <:-∩-right))) (<:-trans <:-function-∩-∪ (<:-function (<:-trans (<:-∩-glb <:-refl p₂) <:-∩-dist-∪) (<:-union (resolve-<: F <:-∩-left) (resolve-<: G <:-∩-left)))) resolve-intro (F ∩ G) V p₁ p₂ | Left q₁ | Right q₂ = <:-trans <:-∩-right (resolve-intro G V p₁ q₂) resolve-intro (F ∩ G) V p₁ p₂ | Right q₁ | Left q₂ = <:-trans <:-∩-left (resolve-intro F V p₁ q₁) -resolve-intro (F ∩ G) V p₁ p₂ | Right q₁ | Right q₂ = <:-trans (∩-<: (resolve-intro F V p₁ q₁) (resolve-intro G V p₁ q₂)) function-∩-<: +resolve-intro (F ∩ G) V p₁ p₂ | Right q₁ | Right q₂ = <:-trans (<:-intersect (resolve-intro F V p₁ q₁) (resolve-intro G V p₁ q₂)) <:-function-∩ diff --git a/prototyping/Properties/Subtyping.agda b/prototyping/Properties/Subtyping.agda index c7303d9b..b628adf5 100644 --- a/prototyping/Properties/Subtyping.agda +++ b/prototyping/Properties/Subtyping.agda @@ -8,7 +8,7 @@ open import FFI.Data.Maybe using (Maybe; just; nothing) open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-ok₁; function-ok₂; function-err; left; right; _,_) open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_; src; tgt) open import Properties.Contradiction using (CONTRADICTION; ¬; ⊥) -open import Properties.DecSubtyping using (language-comp; dec-language; function-err-src; ¬function-err-src; src-¬function-err) +open import Properties.DecSubtyping using (language-comp; dec-language; function-err-src; ¬function-err-src; src-¬function-err; <:-impl-⊇) open import Properties.Equality using (_≢_) open import Properties.Functions using (_∘_) open import Properties.Product using (_×_; _,_) @@ -42,6 +42,61 @@ open import Properties.Product using (_×_; _,_) <:-trans : ∀ {S T U} → (S <: T) → (T <: U) → (S <: U) <:-trans p q = ¬≮:-impl-<: (cond (<:-impl-¬≮: p) (<:-impl-¬≮: q) ∘ ≮:-trans) +-- Properties of union + +<:-union : ∀ {R S T U} → (R <: T) → (S <: U) → ((R ∪ S) <: (T ∪ U)) +<:-union p q t (left r) = left (p t r) +<:-union p q t (right r) = right (q t r) + +<:-∪-left : ∀ {S T} → S <: (S ∪ T) +<:-∪-left t p = left p + +<:-∪-right : ∀ {S T} → T <: (S ∪ T) +<:-∪-right t p = right p + +<:-∪-lub : ∀ {S T U} → (S <: U) → (T <: U) → ((S ∪ T) <: U) +<:-∪-lub p q t (left r) = p t r +<:-∪-lub p q t (right r) = q t r + +-- Properties of intersection + +<:-intersect : ∀ {R S T U} → (R <: T) → (S <: U) → ((R ∩ S) <: (T ∩ U)) +<:-intersect p q t (r₁ , r₂) = (p t r₁ , q t r₂) + +<:-∩-left : ∀ {S T} → (S ∩ T) <: S +<:-∩-left t (p , _) = p + +<:-∩-right : ∀ {S T} → (S ∩ T) <: T +<:-∩-right t (_ , p) = p + +<:-∩-glb : ∀ {S T U} → (S <: T) → (S <: U) → (S <: (T ∩ U)) +<:-∩-glb p q t r = (p t r , q t r) + +<:-∩-dist-∪ : ∀ {S T U} → (S ∩ (T ∪ U)) <: ((S ∩ T) ∪ (S ∩ U)) +<:-∩-dist-∪ t (p₁ , left p₂) = left (p₁ , p₂) +<:-∩-dist-∪ t (p₁ , right p₂) = right (p₁ , p₂) + +-- Properties of functions +<:-function : ∀ {R S T U} → (R <: S) → (T <: U) → (S ⇒ T) <: (R ⇒ U) +<:-function p q function function = function +<:-function p q (function-ok s t) (function-ok₁ r) = function-ok₁ (<:-impl-⊇ p s r) +<:-function p q (function-ok s t) (function-ok₂ r) = function-ok₂ (q t r) +<:-function p q (function-err s) (function-err r) = function-err (<:-impl-⊇ p s r) + +<:-function-∩-∪ : ∀ {R S T U} → ((R ⇒ T) ∩ (S ⇒ U)) <: ((R ∪ S) ⇒ (T ∪ U)) +<:-function-∩-∪ function (function , function) = function +<:-function-∩-∪ (function-ok s t) (function-ok₁ p₁ , function-ok₁ p₂) = function-ok₁ (p₁ , p₂) +<:-function-∩-∪ (function-ok s t) (p₁ , function-ok₂ p₂) = function-ok₂ (right p₂) +<:-function-∩-∪ (function-ok _ _) (function-ok₂ p₁ , p₂) = function-ok₂ (left p₁) +<:-function-∩-∪ (function-err _) (function-err p₁ , function-err q₂) = function-err (p₁ , q₂) + +<:-function-∩ : ∀ {S T U} → ((S ⇒ T) ∩ (S ⇒ U)) <: (S ⇒ (T ∩ U)) +<:-function-∩ function (function , function) = function +<:-function-∩ (function-ok s t) (p₁ , function-ok₁ p₂) = function-ok₁ p₂ +<:-function-∩ (function-ok s t) (function-ok₁ p₁ , p₂) = function-ok₁ p₁ +<:-function-∩ (function-ok s t) (function-ok₂ p₁ , function-ok₂ p₂) = function-ok₂ (p₁ , p₂) +<:-function-∩ (function-err s) (function-err p₁ , function-err p₂) = function-err p₂ + -- Properties of scalars skalar = number ∪ (string ∪ (nil ∪ boolean)) @@ -101,6 +156,20 @@ unknown-≮:-never = witness (scalar nil) unknown never function-≮:-never : ∀ {T U} → ((T ⇒ U) ≮: never) function-≮:-never = witness function function never +<:-never : ∀ {T} → (never <: T) +<:-never t (scalar ()) +<:-never t (scalar-function-err ()) + +<:-never-left : ∀ {S T U} → (S <: (T ∪ U)) → (S ≮: T) → (S ∩ U) ≮: never +<:-never-left p (witness t q₁ q₂) with p t q₁ +<:-never-left p (witness t q₁ q₂) | left r = CONTRADICTION (language-comp t q₂ r) +<:-never-left p (witness t q₁ q₂) | right r = witness t (q₁ , r) never + +<:-never-right : ∀ {S T U} → (S <: (T ∪ U)) → (S ≮: U) → (S ∩ T) ≮: never +<:-never-right p (witness t q₁ q₂) with p t q₁ +<:-never-right p (witness t q₁ q₂) | left r = witness t (q₁ , r) never +<:-never-right p (witness t q₁ q₂) | right r = CONTRADICTION (language-comp t q₂ r) + -- A Gentle Introduction To Semantic Subtyping (https://www.cduce.org/papers/gentle.pdf) -- defines a "set-theoretic" model (sec 2.5) -- Unfortunately we don't quite have this property, due to uninhabited types,