From 0b783d89327eb5de1d20223559aa6ac9111075b7 Mon Sep 17 00:00:00 2001 From: Alan Jeffrey <403333+asajeffrey@users.noreply.github.com> Date: Fri, 18 Feb 2022 16:47:04 -0600 Subject: [PATCH] Add Properties.Equality to prototyping (#376) --- prototyping/Properties.agda | 2 ++ prototyping/Properties/Contradiction.agda | 9 +++++++++ prototyping/Properties/Equality.agda | 23 +++++++++++++++++++++++ 3 files changed, 34 insertions(+) create mode 100644 prototyping/Properties/Contradiction.agda create mode 100644 prototyping/Properties/Equality.agda diff --git a/prototyping/Properties.agda b/prototyping/Properties.agda index b08a3a81..1a6f92fa 100644 --- a/prototyping/Properties.agda +++ b/prototyping/Properties.agda @@ -1,5 +1,7 @@ module Properties where +import Properties.Contradiction import Properties.Dec +import Properties.Equality import Properties.Step import Properties.Remember diff --git a/prototyping/Properties/Contradiction.agda b/prototyping/Properties/Contradiction.agda new file mode 100644 index 00000000..e9a92ad5 --- /dev/null +++ b/prototyping/Properties/Contradiction.agda @@ -0,0 +1,9 @@ +module Properties.Contradiction where + +data ⊥ : Set where + +¬ : Set → Set +¬ A = A → ⊥ + +CONTRADICTION : ∀ {A : Set} → ⊥ → A +CONTRADICTION () diff --git a/prototyping/Properties/Equality.agda b/prototyping/Properties/Equality.agda new file mode 100644 index 00000000..c027bee3 --- /dev/null +++ b/prototyping/Properties/Equality.agda @@ -0,0 +1,23 @@ +module Properties.Equality where + +open import Agda.Builtin.Equality using (_≡_; refl) +open import Properties.Contradiction using (¬) + +sym : ∀ {A : Set} {a b : A} → (a ≡ b) → (b ≡ a) +sym refl = refl + +trans : ∀ {A : Set} {a b c : A} → (a ≡ b) → (b ≡ c) → (a ≡ c) +trans refl refl = refl + +cong : ∀ {A B : Set} {a b : A} (f : A → B) → (a ≡ b) → (f a ≡ f b) +cong f refl = refl + +subst₁ : ∀ {A : Set} {a b : A} (F : A → Set) → (a ≡ b) → (F a) → (F b) +subst₁ F refl x = x + +subst₂ : ∀ {A B : Set} {a b : A} {c d : B} (F : A → B → Set) → (a ≡ b) → (c ≡ d) → (F a c) → (F b d) +subst₂ F refl refl x = x + +_≢_ : ∀ {A : Set} → A → A → Set +(a ≢ b) = ¬(a ≡ b) +