luau/tests/SharedCodeAllocator.test.cpp

334 lines
11 KiB
C++
Raw Permalink Normal View History

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/SharedCodeAllocator.h"
#include "doctest.h"
// We explicitly test correctness of self-assignment for some types
#ifdef __clang__
#pragma GCC diagnostic ignored "-Wself-assign-overloaded"
#endif
using namespace Luau::CodeGen;
TEST_SUITE_BEGIN("SharedCodeAllocator");
TEST_CASE("NativeModuleRefRefcounting")
{
SharedCodeAllocator allocator{};
REQUIRE(allocator.tryGetNativeModule(ModuleId{0x0a}).empty());
NativeModuleRef modRefA = allocator.getOrInsertNativeModule(ModuleId{0x0a}, {}, {}, {});
REQUIRE(!modRefA.empty());
// If we attempt to get the module again, we should get the same module back:
REQUIRE(allocator.tryGetNativeModule(ModuleId{0x0a}).get() == modRefA.get());
// If we try to insert another instance of the module, we should get the
// existing module back:
REQUIRE(allocator.getOrInsertNativeModule(ModuleId{0x0a}, {}, {}, {}).get() == modRefA.get());
// If we try to look up a different module, we should not get the existing
// module back:
REQUIRE(allocator.tryGetNativeModule(ModuleId{0x0b}).empty());
// (Insert a second module to help with validation below)
NativeModuleRef modRefB = allocator.getOrInsertNativeModule(ModuleId{0x0b}, {}, {}, {});
REQUIRE(!modRefB.empty());
REQUIRE(modRefB.get() != modRefA.get());
// Verify NativeModuleRef refcounting:
REQUIRE(modRefA->getRefcount() == 1);
REQUIRE(modRefB->getRefcount() == 1);
// NativeModuleRef non-null copy construction:
{
NativeModuleRef modRef1{modRefA};
REQUIRE(modRef1.get() == modRefA.get());
REQUIRE(modRefA->getRefcount() == 2);
}
REQUIRE(modRefA->getRefcount() == 1);
REQUIRE(modRefB->getRefcount() == 1);
// NativeModuleRef null copy construction:
{
NativeModuleRef modRef1{};
NativeModuleRef modRef2{modRef1};
REQUIRE(modRef1.empty());
REQUIRE(modRef2.empty());
}
REQUIRE(modRefA->getRefcount() == 1);
REQUIRE(modRefB->getRefcount() == 1);
// NativeModuleRef non-null move construction:
{
NativeModuleRef modRef1{modRefA};
NativeModuleRef modRef2{std::move(modRef1)};
REQUIRE(modRef1.empty());
REQUIRE(modRef2.get() == modRefA.get());
REQUIRE(modRefA->getRefcount() == 2);
}
REQUIRE(modRefA->getRefcount() == 1);
REQUIRE(modRefB->getRefcount() == 1);
// NativeModuleRef null move construction:
{
NativeModuleRef modRef1{};
NativeModuleRef modRef2{std::move(modRef1)};
REQUIRE(modRef1.empty());
REQUIRE(modRef2.empty());
}
REQUIRE(modRefA->getRefcount() == 1);
REQUIRE(modRefB->getRefcount() == 1);
// NativeModuleRef null -> non-null copy assignment:
{
NativeModuleRef modRef1{};
modRef1 = modRefA;
REQUIRE(modRef1.get() == modRefA.get());
REQUIRE(modRefA->getRefcount() == 2);
}
REQUIRE(modRefA->getRefcount() == 1);
REQUIRE(modRefB->getRefcount() == 1);
// NativeModuleRef null -> null copy assignment:
{
NativeModuleRef modRef1{};
NativeModuleRef modRef2{};
modRef2 = modRef1;
REQUIRE(modRef1.empty());
REQUIRE(modRef2.empty());
}
REQUIRE(modRefA->getRefcount() == 1);
REQUIRE(modRefB->getRefcount() == 1);
// NativeModuleRef self copy assignment:
{
NativeModuleRef modRef1{modRefA};
modRef1 = modRef1;
REQUIRE(modRef1.get() == modRefA.get());
REQUIRE(modRefA->getRefcount() == 2);
}
REQUIRE(modRefA->getRefcount() == 1);
REQUIRE(modRefB->getRefcount() == 1);
// NativeModuleRef non-null -> non-null copy assignment:
{
NativeModuleRef modRef1{modRefA};
NativeModuleRef modRef2{modRefB};
modRef2 = modRef1;
REQUIRE(modRef1.get() == modRefA.get());
REQUIRE(modRef2.get() == modRefA.get());
REQUIRE(modRefA->getRefcount() == 3);
REQUIRE(modRefB->getRefcount() == 1);
}
REQUIRE(modRefA->getRefcount() == 1);
REQUIRE(modRefB->getRefcount() == 1);
// NativeModuleRef null -> non-null move assignment:
{
NativeModuleRef modRef1{modRefA};
NativeModuleRef modRef2{};
modRef2 = std::move(modRef1);
REQUIRE(modRef1.empty());
REQUIRE(modRef2.get() == modRefA.get());
REQUIRE(modRefA->getRefcount() == 2);
}
REQUIRE(modRefA->getRefcount() == 1);
REQUIRE(modRefB->getRefcount() == 1);
// NativeModuleRef null -> null move assignment:
{
NativeModuleRef modRef1{};
NativeModuleRef modRef2{};
modRef2 = std::move(modRef1);
REQUIRE(modRef1.empty());
REQUIRE(modRef2.empty());
}
REQUIRE(modRefA->getRefcount() == 1);
REQUIRE(modRefB->getRefcount() == 1);
// NativeModuleRef self move assignment:
{
NativeModuleRef modRef1{modRefA};
modRef1 = std::move(modRef1);
REQUIRE(modRef1.get() == modRefA.get());
REQUIRE(modRefA->getRefcount() == 2);
}
REQUIRE(modRefA->getRefcount() == 1);
REQUIRE(modRefB->getRefcount() == 1);
// NativeModuleRef non-null -> non-null move assignment:
{
NativeModuleRef modRef1{modRefA};
NativeModuleRef modRef2{modRefB};
modRef2 = std::move(modRef1);
REQUIRE(modRef1.empty());
REQUIRE(modRef2.get() == modRefA.get());
REQUIRE(modRefA->getRefcount() == 2);
REQUIRE(modRefB->getRefcount() == 1);
}
REQUIRE(modRefA->getRefcount() == 1);
REQUIRE(modRefB->getRefcount() == 1);
// NativeModuleRef null reset:
{
NativeModuleRef modRef1{};
modRef1.reset();
REQUIRE(modRef1.empty());
}
REQUIRE(modRefA->getRefcount() == 1);
REQUIRE(modRefB->getRefcount() == 1);
// NativeModuleRef non-null reset:
{
NativeModuleRef modRef1{modRefA};
modRef1.reset();
REQUIRE(modRef1.empty());
REQUIRE(modRefA->getRefcount() == 1);
}
REQUIRE(modRefA->getRefcount() == 1);
REQUIRE(modRefB->getRefcount() == 1);
// NativeModuleRef swap:
{
NativeModuleRef modRef1{modRefA};
NativeModuleRef modRef2{modRefB};
modRef1.swap(modRef2);
REQUIRE(modRef1.get() == modRefB.get());
REQUIRE(modRef2.get() == modRefA.get());
REQUIRE(modRefA->getRefcount() == 2);
REQUIRE(modRefB->getRefcount() == 2);
}
REQUIRE(modRefA->getRefcount() == 1);
REQUIRE(modRefB->getRefcount() == 1);
// If we release the last reference to a module, it should destroy the
// module:
modRefA.reset();
REQUIRE(allocator.tryGetNativeModule(ModuleId{0x0a}).empty());
}
TEST_CASE("NativeProtoRefcounting")
{
SharedCodeAllocator allocator{};
std::vector<NativeProto> nativeProtos;
nativeProtos.reserve(1);
nativeProtos.push_back(NativeProto{0x01, createNativeProtoExecData(0)});
NativeModuleRef modRefA = allocator.getOrInsertNativeModule(ModuleId{0x0a}, std::move(nativeProtos), {}, {});
REQUIRE(!modRefA.empty());
REQUIRE(modRefA->getRefcount());
const NativeProto* proto1 = modRefA->tryGetNativeProto(0x01);
REQUIRE(proto1 != nullptr);
// getNonOwningPointerToInstructionOffsets should not acquire ownership:
const uint32_t* unownedInstructionOffsets = proto1->getNonOwningPointerToInstructionOffsets();
REQUIRE(unownedInstructionOffsets != nullptr);
REQUIRE(modRefA->getRefcount() == 1);
// getOwningPointerToInstructionOffsets should acquire ownership:
const uint32_t* ownedInstructionOffsets = proto1->getOwningPointerToInstructionOffsets();
REQUIRE(ownedInstructionOffsets == unownedInstructionOffsets);
REQUIRE(modRefA->getRefcount() == 2);
// We should be able to call it multiple times to get multiple references:
const uint32_t* ownedInstructionOffsets2 = proto1->getOwningPointerToInstructionOffsets();
REQUIRE(ownedInstructionOffsets2 == unownedInstructionOffsets);
REQUIRE(modRefA->getRefcount() == 3);
// releaseOwningPointerToInstructionOffsets should be callable to release
// the reference:
NativeProto::releaseOwningPointerToInstructionOffsets(ownedInstructionOffsets2);
REQUIRE(modRefA->getRefcount() == 2);
// If we release our NativeModuleRef, the module should be kept alive by
// the owning instruction offsets pointer:
modRefA.reset();
modRefA = allocator.tryGetNativeModule(ModuleId{0x0a});
REQUIRE(!modRefA.empty());
REQUIRE(modRefA->getRefcount() == 2);
// If the last "release" comes via releaseOwningPointerToInstructionOffsets,
// the module should be successfully destroyed:
modRefA.reset();
NativeProto::releaseOwningPointerToInstructionOffsets(ownedInstructionOffsets);
REQUIRE(allocator.tryGetNativeModule(ModuleId{0x0a}).empty());
}
TEST_CASE("NativeProtoState")
{
SharedCodeAllocator allocator{};
const std::vector<uint8_t> data(16);
const std::vector<uint8_t> code(16);
std::vector<NativeProto> nativeProtos;
nativeProtos.reserve(2);
{
NativeProtoExecDataPtr nativeExecData = createNativeProtoExecData(2);
nativeExecData[0] = 0;
nativeExecData[1] = 4;
NativeProto proto{1, std::move(nativeExecData)};
proto.setEntryOffset(0x00);
nativeProtos.push_back(std::move(proto));
}
{
NativeProtoExecDataPtr nativeExecData = createNativeProtoExecData(2);
nativeExecData[0] = 8;
nativeExecData[1] = 12;
NativeProto proto{3, std::move(nativeExecData)};
proto.setEntryOffset(0x08);
nativeProtos.push_back(std::move(proto));
}
NativeModuleRef modRefA = allocator.getOrInsertNativeModule(ModuleId{0x0a}, std::move(nativeProtos), data, code);
REQUIRE(!modRefA.empty());
REQUIRE(modRefA->getModuleBaseAddress() != nullptr);
const NativeProto* proto1 = modRefA->tryGetNativeProto(1);
REQUIRE(proto1 != nullptr);
REQUIRE(proto1->getBytecodeId() == 1);
REQUIRE(proto1->getEntryAddress() == modRefA->getModuleBaseAddress() + 0x00);
const uint32_t* proto1Offsets = proto1->getNonOwningPointerToInstructionOffsets();
REQUIRE(proto1Offsets != nullptr);
REQUIRE(proto1Offsets[0] == 0);
REQUIRE(proto1Offsets[1] == 4);
const NativeProto* proto3 = modRefA->tryGetNativeProto(3);
REQUIRE(proto3 != nullptr);
REQUIRE(proto3->getBytecodeId() == 3);
REQUIRE(proto3->getEntryAddress() == modRefA->getModuleBaseAddress() + 0x08);
const uint32_t* proto3Offsets = proto3->getNonOwningPointerToInstructionOffsets();
REQUIRE(proto3Offsets != nullptr);
REQUIRE(proto3Offsets[0] == 8);
REQUIRE(proto3Offsets[1] == 12);
// Ensure that non-existent native protos cannot be found:
REQUIRE(modRefA->tryGetNativeProto(0) == nullptr);
REQUIRE(modRefA->tryGetNativeProto(2) == nullptr);
REQUIRE(modRefA->tryGetNativeProto(4) == nullptr);
}