luau/Analysis/src/Autocomplete.cpp

1545 lines
54 KiB
C++
Raw Normal View History

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/Autocomplete.h"
#include "Luau/AstQuery.h"
#include "Luau/BuiltinDefinitions.h"
#include "Luau/Frontend.h"
#include "Luau/ToString.h"
#include "Luau/TypeInfer.h"
#include "Luau/TypePack.h"
#include <algorithm>
#include <unordered_set>
#include <utility>
LUAU_FASTFLAGVARIABLE(ElseElseIfCompletionImprovements, false);
LUAU_FASTFLAG(LuauIfElseExpressionAnalysisSupport)
static const std::unordered_set<std::string> kStatementStartingKeywords = {
"while", "if", "local", "repeat", "function", "do", "for", "return", "break", "continue", "type", "export"};
namespace Luau
{
struct NodeFinder : public AstVisitor
{
const Position pos;
std::vector<AstNode*> ancestry;
explicit NodeFinder(Position pos, AstNode* root)
: pos(pos)
{
}
bool visit(AstExpr* expr) override
{
if (expr->location.begin < pos && pos <= expr->location.end)
{
ancestry.push_back(expr);
return true;
}
return false;
}
bool visit(AstStat* stat) override
{
if (stat->location.begin < pos && pos <= stat->location.end)
{
ancestry.push_back(stat);
return true;
}
return false;
}
bool visit(AstType* type) override
{
if (type->location.begin < pos && pos <= type->location.end)
{
ancestry.push_back(type);
return true;
}
return false;
}
bool visit(AstTypeError* type) override
{
// For a missing type, match the whole range including the start position
if (type->isMissing && type->location.containsClosed(pos))
{
ancestry.push_back(type);
return true;
}
return false;
}
bool visit(class AstTypePack* typePack) override
{
return true;
}
bool visit(AstStatBlock* block) override
{
// If ancestry is empty, we are inspecting the root of the AST. Its extent is considered to be infinite.
if (ancestry.empty())
{
ancestry.push_back(block);
return true;
}
// AstExprIndexName nodes are nested outside-in, so we want the outermost node in the case of nested nodes.
// ex foo.bar.baz is represented in the AST as IndexName{ IndexName {foo, bar}, baz}
if (!ancestry.empty() && ancestry.back()->is<AstExprIndexName>())
return false;
// Type annotation error might intersect the block statement when the function header is being written,
// annotation takes priority
if (!ancestry.empty() && ancestry.back()->is<AstTypeError>())
return false;
// If the cursor is at the end of an expression or type and simultaneously at the beginning of a block,
// the expression or type wins out.
// The exception to this is if we are in a block under an AstExprFunction. In this case, we consider the position to
// be within the block.
if (block->location.begin == pos && !ancestry.empty())
{
if (ancestry.back()->asExpr() && !ancestry.back()->is<AstExprFunction>())
return false;
if (ancestry.back()->asType())
return false;
}
if (block->location.begin <= pos && pos <= block->location.end)
{
ancestry.push_back(block);
return true;
}
return false;
}
};
static bool alreadyHasParens(const std::vector<AstNode*>& nodes)
{
auto iter = nodes.rbegin();
while (iter != nodes.rend() &&
((*iter)->is<AstExprLocal>() || (*iter)->is<AstExprGlobal>() || (*iter)->is<AstExprIndexName>() || (*iter)->is<AstExprIndexExpr>()))
{
iter++;
}
if (iter == nodes.rend() || iter == nodes.rbegin())
{
return false;
}
if (AstExprCall* call = (*iter)->as<AstExprCall>())
{
return call->func == *(iter - 1);
}
return false;
}
static ParenthesesRecommendation getParenRecommendationForFunc(const FunctionTypeVar* func, const std::vector<AstNode*>& nodes)
{
if (alreadyHasParens(nodes))
{
return ParenthesesRecommendation::None;
}
auto idxExpr = nodes.back()->as<AstExprIndexName>();
bool hasImplicitSelf = idxExpr && idxExpr->op == ':';
auto args = Luau::flatten(func->argTypes);
bool noArgFunction = (args.first.empty() || (hasImplicitSelf && args.first.size() == 1)) && !args.second.has_value();
return noArgFunction ? ParenthesesRecommendation::CursorAfter : ParenthesesRecommendation::CursorInside;
}
static ParenthesesRecommendation getParenRecommendationForIntersect(const IntersectionTypeVar* intersect, const std::vector<AstNode*>& nodes)
{
ParenthesesRecommendation rec = ParenthesesRecommendation::None;
for (Luau::TypeId partId : intersect->parts)
{
if (auto partFunc = Luau::get<FunctionTypeVar>(partId))
{
rec = std::max(rec, getParenRecommendationForFunc(partFunc, nodes));
}
else
{
return ParenthesesRecommendation::None;
}
}
return rec;
}
static ParenthesesRecommendation getParenRecommendation(TypeId id, const std::vector<AstNode*>& nodes, TypeCorrectKind typeCorrect)
{
// If element is already type-correct, even a function should be inserted without parenthesis
if (typeCorrect == TypeCorrectKind::Correct)
return ParenthesesRecommendation::None;
id = Luau::follow(id);
if (auto func = get<FunctionTypeVar>(id))
{
return getParenRecommendationForFunc(func, nodes);
}
else if (auto intersect = get<IntersectionTypeVar>(id))
{
return getParenRecommendationForIntersect(intersect, nodes);
}
return ParenthesesRecommendation::None;
}
static TypeCorrectKind checkTypeCorrectKind(const Module& module, TypeArena* typeArena, AstNode* node, TypeId ty)
{
ty = follow(ty);
auto canUnify = [&typeArena, &module](TypeId expectedType, TypeId actualType) {
InternalErrorReporter iceReporter;
UnifierSharedState unifierState(&iceReporter);
Unifier unifier(typeArena, Mode::Strict, module.getModuleScope(), Location(), Variance::Covariant, unifierState);
unifier.tryUnify(expectedType, actualType);
bool ok = unifier.errors.empty();
unifier.log.rollback();
return ok;
};
auto expr = node->asExpr();
if (!expr)
return TypeCorrectKind::None;
auto it = module.astExpectedTypes.find(expr);
if (!it)
return TypeCorrectKind::None;
TypeId expectedType = follow(*it);
if (canUnify(expectedType, ty))
return TypeCorrectKind::Correct;
// We also want to suggest functions that return compatible result
const FunctionTypeVar* ftv = get<FunctionTypeVar>(ty);
if (!ftv)
return TypeCorrectKind::None;
auto [retHead, retTail] = flatten(ftv->retType);
if (!retHead.empty())
return canUnify(expectedType, retHead.front()) ? TypeCorrectKind::CorrectFunctionResult : TypeCorrectKind::None;
// We might only have a variadic tail pack, check if the element is compatible
if (retTail)
{
if (const VariadicTypePack* vtp = get<VariadicTypePack>(follow(*retTail)))
return canUnify(expectedType, vtp->ty) ? TypeCorrectKind::CorrectFunctionResult : TypeCorrectKind::None;
}
return TypeCorrectKind::None;
}
enum class PropIndexType
{
Point,
Colon,
Key,
};
static void autocompleteProps(const Module& module, TypeArena* typeArena, TypeId ty, PropIndexType indexType, const std::vector<AstNode*>& nodes,
AutocompleteEntryMap& result, std::unordered_set<TypeId>& seen, std::optional<const ClassTypeVar*> containingClass = std::nullopt)
{
ty = follow(ty);
if (seen.count(ty))
return;
seen.insert(ty);
auto isWrongIndexer = [indexType, useStrictFunctionIndexers = !!get<ClassTypeVar>(ty)](Luau::TypeId type) {
if (indexType == PropIndexType::Key)
return false;
bool colonIndex = indexType == PropIndexType::Colon;
if (const FunctionTypeVar* ftv = get<FunctionTypeVar>(type))
{
return useStrictFunctionIndexers ? colonIndex != ftv->hasSelf : false;
}
else if (const IntersectionTypeVar* itv = get<IntersectionTypeVar>(type))
{
bool allHaveSelf = true;
for (auto subType : itv->parts)
{
if (const FunctionTypeVar* ftv = get<FunctionTypeVar>(Luau::follow(subType)))
{
allHaveSelf &= ftv->hasSelf;
}
else
{
return colonIndex;
}
}
return useStrictFunctionIndexers ? colonIndex != allHaveSelf : false;
}
else
{
return colonIndex;
}
};
auto fillProps = [&](const ClassTypeVar::Props& props) {
for (const auto& [name, prop] : props)
{
// We are walking up the class hierarchy, so if we encounter a property that we have
// already populated, it takes precedence over the property we found just now.
if (result.count(name) == 0 && name != Parser::errorName)
{
Luau::TypeId type = Luau::follow(prop.type);
TypeCorrectKind typeCorrect =
indexType == PropIndexType::Key ? TypeCorrectKind::Correct : checkTypeCorrectKind(module, typeArena, nodes.back(), type);
ParenthesesRecommendation parens =
indexType == PropIndexType::Key ? ParenthesesRecommendation::None : getParenRecommendation(type, nodes, typeCorrect);
result[name] = AutocompleteEntry{
AutocompleteEntryKind::Property,
type,
prop.deprecated,
isWrongIndexer(type),
typeCorrect,
containingClass,
&prop,
prop.documentationSymbol,
{},
parens,
};
}
}
};
if (auto cls = get<ClassTypeVar>(ty))
{
containingClass = containingClass.value_or(cls);
fillProps(cls->props);
if (cls->parent)
autocompleteProps(module, typeArena, *cls->parent, indexType, nodes, result, seen, cls);
}
else if (auto tbl = get<TableTypeVar>(ty))
fillProps(tbl->props);
else if (auto mt = get<MetatableTypeVar>(ty))
{
autocompleteProps(module, typeArena, mt->table, indexType, nodes, result, seen);
auto mtable = get<TableTypeVar>(mt->metatable);
if (!mtable)
return;
auto indexIt = mtable->props.find("__index");
if (indexIt != mtable->props.end())
{
if (get<TableTypeVar>(indexIt->second.type) || get<MetatableTypeVar>(indexIt->second.type))
autocompleteProps(module, typeArena, indexIt->second.type, indexType, nodes, result, seen);
else if (auto indexFunction = get<FunctionTypeVar>(indexIt->second.type))
{
std::optional<TypeId> indexFunctionResult = first(indexFunction->retType);
if (indexFunctionResult)
autocompleteProps(module, typeArena, *indexFunctionResult, indexType, nodes, result, seen);
}
}
}
else if (auto i = get<IntersectionTypeVar>(ty))
{
// Complete all properties in every variant
for (TypeId ty : i->parts)
{
AutocompleteEntryMap inner;
std::unordered_set<TypeId> innerSeen = seen;
autocompleteProps(module, typeArena, ty, indexType, nodes, inner, innerSeen);
for (auto& pair : inner)
result.insert(pair);
}
}
else if (auto u = get<UnionTypeVar>(ty))
{
// Complete all properties common to all variants
auto iter = begin(u);
auto endIter = end(u);
while (iter != endIter)
{
2021-11-12 02:12:39 +00:00
if (isNil(*iter))
++iter;
else
2021-11-12 02:12:39 +00:00
break;
}
if (iter == endIter)
return;
autocompleteProps(module, typeArena, *iter, indexType, nodes, result, seen);
++iter;
while (iter != endIter)
{
AutocompleteEntryMap inner;
std::unordered_set<TypeId> innerSeen = seen;
2021-11-12 02:12:39 +00:00
if (isNil(*iter))
{
2021-11-12 02:12:39 +00:00
++iter;
continue;
}
autocompleteProps(module, typeArena, *iter, indexType, nodes, inner, innerSeen);
std::unordered_set<std::string> toRemove;
for (const auto& [k, v] : result)
{
(void)v;
if (!inner.count(k))
toRemove.insert(k);
}
for (const std::string& k : toRemove)
result.erase(k);
++iter;
}
}
}
static void autocompleteKeywords(
const SourceModule& sourceModule, const std::vector<AstNode*>& ancestry, Position position, AutocompleteEntryMap& result)
{
LUAU_ASSERT(!ancestry.empty());
AstNode* node = ancestry.back();
if (!node->is<AstExprFunction>() && node->asExpr())
{
// This is not strictly correct. We should recommend `and` and `or` only after
// another expression, not at the start of a new one. We should only recommend
// `not` at the start of an expression. Detecting either case reliably is quite
// complex, however; this is good enough for now.
// These are not context-sensitive keywords, so we can unconditionally assign.
result["and"] = {AutocompleteEntryKind::Keyword};
result["or"] = {AutocompleteEntryKind::Keyword};
result["not"] = {AutocompleteEntryKind::Keyword};
}
}
static void autocompleteProps(
const Module& module, TypeArena* typeArena, TypeId ty, PropIndexType indexType, const std::vector<AstNode*>& nodes, AutocompleteEntryMap& result)
{
std::unordered_set<TypeId> seen;
autocompleteProps(module, typeArena, ty, indexType, nodes, result, seen);
}
AutocompleteEntryMap autocompleteProps(
const Module& module, TypeArena* typeArena, TypeId ty, PropIndexType indexType, const std::vector<AstNode*>& nodes)
{
AutocompleteEntryMap result;
autocompleteProps(module, typeArena, ty, indexType, nodes, result);
return result;
}
AutocompleteEntryMap autocompleteModuleTypes(const Module& module, Position position, std::string_view moduleName)
{
AutocompleteEntryMap result;
for (ScopePtr scope = findScopeAtPosition(module, position); scope; scope = scope->parent)
{
if (auto it = scope->importedTypeBindings.find(std::string(moduleName)); it != scope->importedTypeBindings.end())
{
for (const auto& [name, ty] : it->second)
result[name] = AutocompleteEntry{AutocompleteEntryKind::Type, ty.type};
break;
}
}
return result;
}
static bool canSuggestInferredType(ScopePtr scope, TypeId ty)
{
ty = follow(ty);
// No point in suggesting 'any', invalid to suggest others
if (get<AnyTypeVar>(ty) || get<ErrorTypeVar>(ty) || get<GenericTypeVar>(ty) || get<FreeTypeVar>(ty))
return false;
// No syntax for unnamed tables with a metatable
2021-11-12 02:12:39 +00:00
if (get<MetatableTypeVar>(ty))
return false;
if (const TableTypeVar* ttv = get<TableTypeVar>(ty))
{
if (ttv->name)
return true;
if (ttv->syntheticName)
return false;
}
// We might still have a type with cycles or one that is too long, we'll check that later
return true;
}
// Walk complex type trees to find the element that is being edited
static std::optional<TypeId> findTypeElementAt(AstType* astType, TypeId ty, Position position);
static std::optional<TypeId> findTypeElementAt(const AstTypeList& astTypeList, TypePackId tp, Position position)
{
for (size_t i = 0; i < astTypeList.types.size; i++)
{
AstType* type = astTypeList.types.data[i];
if (type->location.containsClosed(position))
{
auto [head, _] = flatten(tp);
if (i < head.size())
return findTypeElementAt(type, head[i], position);
}
}
if (AstTypePack* argTp = astTypeList.tailType)
{
if (auto variadic = argTp->as<AstTypePackVariadic>())
{
if (variadic->location.containsClosed(position))
{
auto [_, tail] = flatten(tp);
if (tail)
{
if (const VariadicTypePack* vtp = get<VariadicTypePack>(follow(*tail)))
return findTypeElementAt(variadic->variadicType, vtp->ty, position);
}
}
}
}
return {};
}
static std::optional<TypeId> findTypeElementAt(AstType* astType, TypeId ty, Position position)
{
ty = follow(ty);
if (astType->is<AstTypeReference>())
return ty;
if (astType->is<AstTypeError>())
return ty;
if (AstTypeFunction* type = astType->as<AstTypeFunction>())
{
const FunctionTypeVar* ftv = get<FunctionTypeVar>(ty);
if (!ftv)
return {};
if (auto element = findTypeElementAt(type->argTypes, ftv->argTypes, position))
return element;
if (auto element = findTypeElementAt(type->returnTypes, ftv->retType, position))
return element;
}
// It's possible to walk through other types like intrsection and unions if we find value in doing that
return {};
}
std::optional<TypeId> getLocalTypeInScopeAt(const Module& module, Position position, AstLocal* local)
{
if (ScopePtr scope = findScopeAtPosition(module, position))
{
for (const auto& [name, binding] : scope->bindings)
{
if (name == local)
return binding.typeId;
}
}
return {};
}
static std::optional<Name> tryGetTypeNameInScope(ScopePtr scope, TypeId ty)
{
if (!canSuggestInferredType(scope, ty))
return std::nullopt;
ToStringOptions opts;
opts.useLineBreaks = false;
opts.hideTableKind = true;
opts.scope = scope;
ToStringResult name = toStringDetailed(ty, opts);
if (name.error || name.invalid || name.cycle || name.truncated)
return std::nullopt;
return name.name;
}
static bool tryAddTypeCorrectSuggestion(AutocompleteEntryMap& result, ScopePtr scope, AstType* topType, TypeId inferredType, Position position)
{
std::optional<TypeId> ty;
if (topType)
ty = findTypeElementAt(topType, inferredType, position);
else
ty = inferredType;
if (!ty)
return false;
if (auto name = tryGetTypeNameInScope(scope, *ty))
{
if (auto it = result.find(*name); it != result.end())
it->second.typeCorrect = TypeCorrectKind::Correct;
else
result[*name] = AutocompleteEntry{AutocompleteEntryKind::Type, *ty, false, false, TypeCorrectKind::Correct};
return true;
}
return false;
}
static std::optional<TypeId> tryGetTypePackTypeAt(TypePackId tp, size_t index)
{
auto [tpHead, tpTail] = flatten(tp);
if (index < tpHead.size())
return tpHead[index];
// Infinite tail
if (tpTail)
{
if (const VariadicTypePack* vtp = get<VariadicTypePack>(follow(*tpTail)))
return vtp->ty;
}
return {};
}
template<typename T>
std::optional<const T*> returnFirstNonnullOptionOfType(const UnionTypeVar* utv)
{
std::optional<const T*> ret;
for (TypeId subTy : utv)
{
if (isNil(subTy))
continue;
if (const T* ftv = get<T>(follow(subTy)))
{
if (ret.has_value())
{
return std::nullopt;
}
ret = ftv;
}
else
{
return std::nullopt;
}
}
return ret;
}
static std::optional<bool> functionIsExpectedAt(const Module& module, AstNode* node)
{
auto expr = node->asExpr();
if (!expr)
return std::nullopt;
auto it = module.astExpectedTypes.find(expr);
if (!it)
return std::nullopt;
TypeId expectedType = follow(*it);
2021-11-12 02:12:39 +00:00
if (get<FunctionTypeVar>(expectedType))
return true;
if (const IntersectionTypeVar* itv = get<IntersectionTypeVar>(expectedType))
{
return std::all_of(begin(itv->parts), end(itv->parts), [](auto&& ty) {
return get<FunctionTypeVar>(Luau::follow(ty)) != nullptr;
});
}
if (const UnionTypeVar* utv = get<UnionTypeVar>(expectedType))
return returnFirstNonnullOptionOfType<FunctionTypeVar>(utv).has_value();
return false;
}
AutocompleteEntryMap autocompleteTypeNames(const Module& module, Position position, const std::vector<AstNode*>& ancestry)
{
AutocompleteEntryMap result;
ScopePtr startScope = findScopeAtPosition(module, position);
for (ScopePtr scope = startScope; scope; scope = scope->parent)
{
for (const auto& [name, ty] : scope->exportedTypeBindings)
{
if (!result.count(name))
result[name] = AutocompleteEntry{AutocompleteEntryKind::Type, ty.type, false, false, TypeCorrectKind::None, std::nullopt,
std::nullopt, ty.type->documentationSymbol};
}
for (const auto& [name, ty] : scope->privateTypeBindings)
{
if (!result.count(name))
result[name] = AutocompleteEntry{AutocompleteEntryKind::Type, ty.type, false, false, TypeCorrectKind::None, std::nullopt,
std::nullopt, ty.type->documentationSymbol};
}
for (const auto& [name, _] : scope->importedTypeBindings)
{
if (auto binding = scope->linearSearchForBinding(name, true))
{
if (!result.count(name))
result[name] = AutocompleteEntry{AutocompleteEntryKind::Module, binding->typeId};
}
}
}
AstNode* parent = nullptr;
AstType* topType = nullptr;
for (auto it = ancestry.rbegin(), e = ancestry.rend(); it != e; ++it)
{
if (AstType* asType = (*it)->asType())
{
topType = asType;
}
else
{
parent = *it;
break;
}
}
if (!parent)
return result;
if (AstStatLocal* node = parent->as<AstStatLocal>()) // Try to provide inferred type of the local
{
// Look at which of the variable types we are defining
for (size_t i = 0; i < node->vars.size; i++)
{
AstLocal* var = node->vars.data[i];
if (var->annotation && var->annotation->location.containsClosed(position))
{
if (node->values.size == 0)
break;
unsigned tailPos = 0;
// For multiple return values we will try to unpack last function call return type pack
if (i >= node->values.size)
{
tailPos = int(i) - int(node->values.size) + 1;
i = int(node->values.size) - 1;
}
AstExpr* expr = node->values.data[i]->asExpr();
if (!expr)
break;
TypeId inferredType = nullptr;
if (AstExprCall* exprCall = expr->as<AstExprCall>())
{
if (auto it = module.astTypes.find(exprCall->func))
{
if (const FunctionTypeVar* ftv = get<FunctionTypeVar>(follow(*it)))
{
if (auto ty = tryGetTypePackTypeAt(ftv->retType, tailPos))
inferredType = *ty;
}
}
}
else
{
if (tailPos != 0)
break;
if (auto it = module.astTypes.find(expr))
inferredType = *it;
}
if (inferredType)
tryAddTypeCorrectSuggestion(result, startScope, topType, inferredType, position);
break;
}
}
}
else if (AstExprFunction* node = parent->as<AstExprFunction>())
{
// For lookup inside expected function type if that's available
auto tryGetExpectedFunctionType = [](const Module& module, AstExpr* expr) -> const FunctionTypeVar* {
auto it = module.astExpectedTypes.find(expr);
if (!it)
return nullptr;
TypeId ty = follow(*it);
if (const FunctionTypeVar* ftv = get<FunctionTypeVar>(ty))
return ftv;
// Handle optional function type
if (const UnionTypeVar* utv = get<UnionTypeVar>(ty))
{
return returnFirstNonnullOptionOfType<FunctionTypeVar>(utv).value_or(nullptr);
}
return nullptr;
};
// Find which argument type we are defining
for (size_t i = 0; i < node->args.size; i++)
{
AstLocal* arg = node->args.data[i];
if (arg->annotation && arg->annotation->location.containsClosed(position))
{
if (const FunctionTypeVar* ftv = tryGetExpectedFunctionType(module, node))
{
if (auto ty = tryGetTypePackTypeAt(ftv->argTypes, i))
tryAddTypeCorrectSuggestion(result, startScope, topType, *ty, position);
}
// Otherwise, try to use the type inferred by typechecker
else if (auto inferredType = getLocalTypeInScopeAt(module, position, arg))
{
tryAddTypeCorrectSuggestion(result, startScope, topType, *inferredType, position);
}
break;
}
}
if (AstTypePack* argTp = node->varargAnnotation)
{
if (auto variadic = argTp->as<AstTypePackVariadic>())
{
if (variadic->location.containsClosed(position))
{
if (const FunctionTypeVar* ftv = tryGetExpectedFunctionType(module, node))
{
if (auto ty = tryGetTypePackTypeAt(ftv->argTypes, ~0u))
tryAddTypeCorrectSuggestion(result, startScope, topType, *ty, position);
}
}
}
}
for (size_t i = 0; i < node->returnAnnotation.types.size; i++)
{
AstType* ret = node->returnAnnotation.types.data[i];
if (ret->location.containsClosed(position))
{
if (const FunctionTypeVar* ftv = tryGetExpectedFunctionType(module, node))
{
if (auto ty = tryGetTypePackTypeAt(ftv->retType, i))
tryAddTypeCorrectSuggestion(result, startScope, topType, *ty, position);
}
// TODO: with additional type information, we could suggest inferred return type here
break;
}
}
if (AstTypePack* retTp = node->returnAnnotation.tailType)
{
if (auto variadic = retTp->as<AstTypePackVariadic>())
{
if (variadic->location.containsClosed(position))
{
if (const FunctionTypeVar* ftv = tryGetExpectedFunctionType(module, node))
{
if (auto ty = tryGetTypePackTypeAt(ftv->retType, ~0u))
tryAddTypeCorrectSuggestion(result, startScope, topType, *ty, position);
}
}
}
}
}
return result;
}
static bool isInLocalNames(const std::vector<AstNode*>& ancestry, Position position)
{
for (auto iter = ancestry.rbegin(); iter != ancestry.rend(); iter++)
{
if (auto statLocal = (*iter)->as<AstStatLocal>())
{
for (auto var : statLocal->vars)
{
if (var->location.containsClosed(position))
{
return true;
}
}
}
else if (auto funcExpr = (*iter)->as<AstExprFunction>())
{
if (funcExpr->argLocation && funcExpr->argLocation->contains(position))
{
return true;
}
}
else if (auto localFunc = (*iter)->as<AstStatLocalFunction>())
{
return localFunc->name->location.containsClosed(position);
}
else if (auto block = (*iter)->as<AstStatBlock>())
{
if (block->body.size > 0)
{
return false;
}
}
else if ((*iter)->asStat())
{
return false;
}
}
return false;
}
static bool isIdentifier(AstNode* node)
{
return node->is<AstExprGlobal>() || node->is<AstExprLocal>();
}
static bool isBeingDefined(const std::vector<AstNode*>& ancestry, const Symbol& symbol)
{
// Current set of rules only check for local binding match
if (!symbol.local)
return false;
for (auto iter = ancestry.rbegin(); iter != ancestry.rend(); iter++)
{
if (auto statLocal = (*iter)->as<AstStatLocal>())
{
for (auto var : statLocal->vars)
{
if (symbol.local == var)
return true;
}
}
}
return false;
}
template<typename T>
T* extractStat(const std::vector<AstNode*>& ancestry)
{
AstNode* node = ancestry.size() >= 1 ? ancestry.rbegin()[0] : nullptr;
if (!node)
return nullptr;
if (T* t = node->as<T>())
return t;
AstNode* parent = ancestry.size() >= 2 ? ancestry.rbegin()[1] : nullptr;
if (!parent)
return nullptr;
if (T* t = parent->as<T>(); t && parent->is<AstStatBlock>())
return t;
AstNode* grandParent = ancestry.size() >= 3 ? ancestry.rbegin()[2] : nullptr;
AstNode* greatGrandParent = ancestry.size() >= 4 ? ancestry.rbegin()[3] : nullptr;
if (!grandParent || !greatGrandParent)
return nullptr;
if (T* t = greatGrandParent->as<T>(); t && grandParent->is<AstStatBlock>() && parent->is<AstStatError>() && isIdentifier(node))
return t;
return nullptr;
}
static bool isBindingLegalAtCurrentPosition(const Binding& binding, Position pos)
{
// Default Location used for global bindings, which are always legal.
return binding.location == Location() || binding.location.end < pos;
}
static AutocompleteEntryMap autocompleteStatement(
const SourceModule& sourceModule, const Module& module, const std::vector<AstNode*>& ancestry, Position position)
{
// This is inefficient. :(
ScopePtr scope = findScopeAtPosition(module, position);
AutocompleteEntryMap result;
if (isInLocalNames(ancestry, position))
{
autocompleteKeywords(sourceModule, ancestry, position, result);
return result;
}
while (scope)
{
for (const auto& [name, binding] : scope->bindings)
{
if (!isBindingLegalAtCurrentPosition(binding, position))
continue;
std::string n = toString(name);
if (!result.count(n))
result[n] = {AutocompleteEntryKind::Binding, binding.typeId, binding.deprecated, false, TypeCorrectKind::None, std::nullopt,
std::nullopt, binding.documentationSymbol, {}, getParenRecommendation(binding.typeId, ancestry, TypeCorrectKind::None)};
}
scope = scope->parent;
}
for (const auto& kw : kStatementStartingKeywords)
result.emplace(kw, AutocompleteEntry{AutocompleteEntryKind::Keyword});
for (auto it = ancestry.rbegin(); it != ancestry.rend(); ++it)
{
if (AstStatForIn* statForIn = (*it)->as<AstStatForIn>(); statForIn && !statForIn->hasEnd)
result.emplace("end", AutocompleteEntry{AutocompleteEntryKind::Keyword});
if (AstStatFor* statFor = (*it)->as<AstStatFor>(); statFor && !statFor->hasEnd)
result.emplace("end", AutocompleteEntry{AutocompleteEntryKind::Keyword});
if (AstStatIf* statIf = (*it)->as<AstStatIf>(); statIf && !statIf->hasEnd)
result.emplace("end", AutocompleteEntry{AutocompleteEntryKind::Keyword});
if (AstStatWhile* statWhile = (*it)->as<AstStatWhile>(); statWhile && !statWhile->hasEnd)
result.emplace("end", AutocompleteEntry{AutocompleteEntryKind::Keyword});
if (AstExprFunction* exprFunction = (*it)->as<AstExprFunction>(); exprFunction && !exprFunction->hasEnd)
result.emplace("end", AutocompleteEntry{AutocompleteEntryKind::Keyword});
}
if (ancestry.size() >= 2)
{
AstNode* parent = ancestry.rbegin()[1];
if (AstStatIf* statIf = parent->as<AstStatIf>())
{
if (!statIf->elsebody || (statIf->hasElse && statIf->elseLocation.containsClosed(position)))
{
result.emplace("else", AutocompleteEntry{AutocompleteEntryKind::Keyword});
result.emplace("elseif", AutocompleteEntry{AutocompleteEntryKind::Keyword});
}
}
if (AstStatRepeat* statRepeat = parent->as<AstStatRepeat>(); statRepeat && !statRepeat->hasUntil)
result.emplace("until", AutocompleteEntry{AutocompleteEntryKind::Keyword});
}
if (ancestry.size() >= 4)
{
auto iter = ancestry.rbegin();
if (AstStatIf* statIf = iter[3]->as<AstStatIf>();
statIf != nullptr && !statIf->elsebody && iter[2]->is<AstStatBlock>() && iter[1]->is<AstStatError>() && isIdentifier(iter[0]))
{
result.emplace("else", AutocompleteEntry{AutocompleteEntryKind::Keyword});
result.emplace("elseif", AutocompleteEntry{AutocompleteEntryKind::Keyword});
}
}
if (AstStatRepeat* statRepeat = extractStat<AstStatRepeat>(ancestry); statRepeat && !statRepeat->hasUntil)
result.emplace("until", AutocompleteEntry{AutocompleteEntryKind::Keyword});
return result;
}
// Returns true if completions were generated (completions will be inserted into 'outResult')
// Returns false if no completions were generated
static bool autocompleteIfElseExpression(
const AstNode* node, const std::vector<AstNode*>& ancestry, const Position& position, AutocompleteEntryMap& outResult)
{
AstNode* parent = ancestry.size() >= 2 ? ancestry.rbegin()[1] : nullptr;
if (!parent)
return false;
AstExprIfElse* ifElseExpr = parent->as<AstExprIfElse>();
if (!ifElseExpr || ifElseExpr->condition->location.containsClosed(position))
{
return false;
}
else if (!ifElseExpr->hasThen)
{
outResult["then"] = {AutocompleteEntryKind::Keyword};
return true;
}
else if (ifElseExpr->trueExpr->location.containsClosed(position))
{
return false;
}
else if (!ifElseExpr->hasElse)
{
outResult["else"] = {AutocompleteEntryKind::Keyword};
outResult["elseif"] = {AutocompleteEntryKind::Keyword};
return true;
}
else
{
return false;
}
}
static void autocompleteExpression(const SourceModule& sourceModule, const Module& module, const TypeChecker& typeChecker, TypeArena* typeArena,
const std::vector<AstNode*>& ancestry, Position position, AutocompleteEntryMap& result)
{
LUAU_ASSERT(!ancestry.empty());
AstNode* node = ancestry.rbegin()[0];
if (node->is<AstExprIndexName>())
{
if (auto it = module.astTypes.find(node->asExpr()))
autocompleteProps(module, typeArena, *it, PropIndexType::Point, ancestry, result);
}
else if (FFlag::LuauIfElseExpressionAnalysisSupport && autocompleteIfElseExpression(node, ancestry, position, result))
return;
else if (node->is<AstExprFunction>())
return;
else
{
// This is inefficient. :(
ScopePtr scope = findScopeAtPosition(module, position);
while (scope)
{
for (const auto& [name, binding] : scope->bindings)
{
if (!isBindingLegalAtCurrentPosition(binding, position))
continue;
if (isBeingDefined(ancestry, name))
continue;
std::string n = toString(name);
if (!result.count(n))
{
TypeCorrectKind typeCorrect = checkTypeCorrectKind(module, typeArena, node, binding.typeId);
result[n] = {AutocompleteEntryKind::Binding, binding.typeId, binding.deprecated, false, typeCorrect, std::nullopt, std::nullopt,
binding.documentationSymbol, {}, getParenRecommendation(binding.typeId, ancestry, typeCorrect)};
}
}
scope = scope->parent;
}
TypeCorrectKind correctForNil = checkTypeCorrectKind(module, typeArena, node, typeChecker.nilType);
TypeCorrectKind correctForBoolean = checkTypeCorrectKind(module, typeArena, node, typeChecker.booleanType);
TypeCorrectKind correctForFunction = functionIsExpectedAt(module, node).value_or(false) ? TypeCorrectKind::Correct : TypeCorrectKind::None;
if (FFlag::LuauIfElseExpressionAnalysisSupport)
result["if"] = {AutocompleteEntryKind::Keyword, std::nullopt, false, false};
result["true"] = {AutocompleteEntryKind::Keyword, typeChecker.booleanType, false, false, correctForBoolean};
result["false"] = {AutocompleteEntryKind::Keyword, typeChecker.booleanType, false, false, correctForBoolean};
result["nil"] = {AutocompleteEntryKind::Keyword, typeChecker.nilType, false, false, correctForNil};
result["not"] = {AutocompleteEntryKind::Keyword};
result["function"] = {AutocompleteEntryKind::Keyword, std::nullopt, false, false, correctForFunction};
}
}
static AutocompleteEntryMap autocompleteExpression(const SourceModule& sourceModule, const Module& module, const TypeChecker& typeChecker,
TypeArena* typeArena, const std::vector<AstNode*>& ancestry, Position position)
{
AutocompleteEntryMap result;
autocompleteExpression(sourceModule, module, typeChecker, typeArena, ancestry, position, result);
return result;
}
static std::optional<const ClassTypeVar*> getMethodContainingClass(const ModulePtr& module, AstExpr* funcExpr)
{
AstExpr* parentExpr = nullptr;
if (auto indexName = funcExpr->as<AstExprIndexName>())
{
parentExpr = indexName->expr;
}
else if (auto indexExpr = funcExpr->as<AstExprIndexExpr>())
{
parentExpr = indexExpr->expr;
}
else
{
return std::nullopt;
}
auto parentIt = module->astTypes.find(parentExpr);
if (!parentIt)
{
return std::nullopt;
}
Luau::TypeId parentType = Luau::follow(*parentIt);
if (auto parentClass = Luau::get<ClassTypeVar>(parentType))
{
return parentClass;
}
if (auto parentUnion = Luau::get<UnionTypeVar>(parentType))
{
return returnFirstNonnullOptionOfType<ClassTypeVar>(parentUnion);
}
return std::nullopt;
}
static std::optional<AutocompleteEntryMap> autocompleteStringParams(const SourceModule& sourceModule, const ModulePtr& module,
const std::vector<AstNode*>& nodes, Position position, StringCompletionCallback callback)
{
if (nodes.size() < 2)
{
return std::nullopt;
}
if (!nodes.back()->is<AstExprConstantString>())
{
return std::nullopt;
}
AstExprCall* candidate = nodes.at(nodes.size() - 2)->as<AstExprCall>();
if (!candidate)
{
return std::nullopt;
}
// HACK: All current instances of 'magic string' params are the first parameter of their functions,
// so we encode that here rather than putting a useless member on the FunctionTypeVar struct.
if (candidate->args.size > 1 && !candidate->args.data[0]->location.contains(position))
{
return std::nullopt;
}
auto it = module->astTypes.find(candidate->func);
if (!it)
{
return std::nullopt;
}
auto performCallback = [&](const FunctionTypeVar* funcType) -> std::optional<AutocompleteEntryMap> {
for (const std::string& tag : funcType->tags)
{
if (std::optional<AutocompleteEntryMap> ret = callback(tag, getMethodContainingClass(module, candidate->func)))
{
return ret;
}
}
return std::nullopt;
};
auto followedId = Luau::follow(*it);
if (auto functionType = Luau::get<FunctionTypeVar>(followedId))
{
return performCallback(functionType);
}
if (auto intersect = Luau::get<IntersectionTypeVar>(followedId))
{
for (TypeId part : intersect->parts)
{
if (auto candidateFunctionType = Luau::get<FunctionTypeVar>(part))
{
if (std::optional<AutocompleteEntryMap> ret = performCallback(candidateFunctionType))
{
return ret;
}
}
}
}
return std::nullopt;
}
static AutocompleteResult autocomplete(const SourceModule& sourceModule, const ModulePtr& module, const TypeChecker& typeChecker,
TypeArena* typeArena, Position position, StringCompletionCallback callback)
{
if (isWithinComment(sourceModule, position))
return {};
NodeFinder finder{position, sourceModule.root};
sourceModule.root->visit(&finder);
LUAU_ASSERT(!finder.ancestry.empty());
AstNode* node = finder.ancestry.back();
AstExprConstantNil dummy{Location{}};
AstNode* parent = finder.ancestry.size() >= 2 ? finder.ancestry.rbegin()[1] : &dummy;
// If we are inside a body of a function that doesn't have a completed argument list, ignore the body node
if (auto exprFunction = parent->as<AstExprFunction>(); exprFunction && !exprFunction->argLocation && node == exprFunction->body)
{
finder.ancestry.pop_back();
node = finder.ancestry.back();
parent = finder.ancestry.size() >= 2 ? finder.ancestry.rbegin()[1] : &dummy;
}
if (auto indexName = node->as<AstExprIndexName>())
{
auto it = module->astTypes.find(indexName->expr);
if (!it)
return {};
TypeId ty = follow(*it);
PropIndexType indexType = indexName->op == ':' ? PropIndexType::Colon : PropIndexType::Point;
if (isString(ty))
return {autocompleteProps(*module, typeArena, typeChecker.globalScope->bindings[AstName{"string"}].typeId, indexType, finder.ancestry),
finder.ancestry};
else
return {autocompleteProps(*module, typeArena, ty, indexType, finder.ancestry), finder.ancestry};
}
else if (auto typeReference = node->as<AstTypeReference>())
{
if (typeReference->hasPrefix)
return {autocompleteModuleTypes(*module, position, typeReference->prefix.value), finder.ancestry};
else
return {autocompleteTypeNames(*module, position, finder.ancestry), finder.ancestry};
}
else if (node->is<AstTypeError>())
{
return {autocompleteTypeNames(*module, position, finder.ancestry), finder.ancestry};
}
else if (AstStatLocal* statLocal = node->as<AstStatLocal>())
{
if (statLocal->vars.size == 1 && (!statLocal->hasEqualsSign || position < statLocal->equalsSignLocation.begin))
return {{{"function", AutocompleteEntry{AutocompleteEntryKind::Keyword}}}, finder.ancestry};
else if (statLocal->hasEqualsSign && position >= statLocal->equalsSignLocation.end)
return {autocompleteExpression(sourceModule, *module, typeChecker, typeArena, finder.ancestry, position), finder.ancestry};
else
return {};
}
else if (AstStatFor* statFor = extractStat<AstStatFor>(finder.ancestry))
{
if (!statFor->hasDo || position < statFor->doLocation.begin)
{
if (!statFor->from->is<AstExprError>() && !statFor->to->is<AstExprError>() && (!statFor->step || !statFor->step->is<AstExprError>()))
return {{{"do", AutocompleteEntry{AutocompleteEntryKind::Keyword}}}, finder.ancestry};
if (statFor->from->location.containsClosed(position) || statFor->to->location.containsClosed(position) ||
(statFor->step && statFor->step->location.containsClosed(position)))
return {autocompleteExpression(sourceModule, *module, typeChecker, typeArena, finder.ancestry, position), finder.ancestry};
return {};
}
return {autocompleteStatement(sourceModule, *module, finder.ancestry, position), finder.ancestry};
}
else if (AstStatForIn* statForIn = parent->as<AstStatForIn>(); statForIn && (node->is<AstStatBlock>() || isIdentifier(node)))
{
if (!statForIn->hasIn || position <= statForIn->inLocation.begin)
{
AstLocal* lastName = statForIn->vars.data[statForIn->vars.size - 1];
if (lastName->name == Parser::errorName || lastName->location.containsClosed(position))
{
// Here we are either working with a missing binding (as would be the case in a bare "for" keyword) or
// the cursor is still touching a binding name. The user is still typing a new name, so we should not offer
// any suggestions.
return {};
}
return {{{"in", AutocompleteEntry{AutocompleteEntryKind::Keyword}}}, finder.ancestry};
}
if (!statForIn->hasDo || position <= statForIn->doLocation.begin)
{
LUAU_ASSERT(statForIn->values.size > 0);
AstExpr* lastExpr = statForIn->values.data[statForIn->values.size - 1];
if (lastExpr->location.containsClosed(position))
return {autocompleteExpression(sourceModule, *module, typeChecker, typeArena, finder.ancestry, position), finder.ancestry};
if (position > lastExpr->location.end)
return {{{"do", AutocompleteEntry{AutocompleteEntryKind::Keyword}}}, finder.ancestry};
return {}; // Not sure what this means
}
}
else if (AstStatForIn* statForIn = extractStat<AstStatForIn>(finder.ancestry))
{
// The AST looks a bit differently if the cursor is at a position where only the "do" keyword is allowed.
// ex "for f in f do"
if (!statForIn->hasDo)
return {{{"do", AutocompleteEntry{AutocompleteEntryKind::Keyword}}}, finder.ancestry};
return {autocompleteStatement(sourceModule, *module, finder.ancestry, position), finder.ancestry};
}
else if (AstStatWhile* statWhile = parent->as<AstStatWhile>(); node->is<AstStatBlock>() && statWhile)
{
if (!statWhile->hasDo && !statWhile->condition->is<AstStatError>() && position > statWhile->condition->location.end)
return {{{"do", AutocompleteEntry{AutocompleteEntryKind::Keyword}}}, finder.ancestry};
if (!statWhile->hasDo || position < statWhile->doLocation.begin)
return {autocompleteExpression(sourceModule, *module, typeChecker, typeArena, finder.ancestry, position), finder.ancestry};
if (statWhile->hasDo && position > statWhile->doLocation.end)
return {autocompleteStatement(sourceModule, *module, finder.ancestry, position), finder.ancestry};
}
else if (AstStatWhile* statWhile = extractStat<AstStatWhile>(finder.ancestry); statWhile && !statWhile->hasDo)
return {{{"do", AutocompleteEntry{AutocompleteEntryKind::Keyword}}}, finder.ancestry};
else if (AstStatIf* statIf = node->as<AstStatIf>(); FFlag::ElseElseIfCompletionImprovements && statIf && !statIf->hasElse)
{
return {{{"else", AutocompleteEntry{AutocompleteEntryKind::Keyword}}, {"elseif", AutocompleteEntry{AutocompleteEntryKind::Keyword}}},
finder.ancestry};
}
else if (AstStatIf* statIf = parent->as<AstStatIf>(); statIf && node->is<AstStatBlock>())
{
if (statIf->condition->is<AstExprError>())
return {autocompleteExpression(sourceModule, *module, typeChecker, typeArena, finder.ancestry, position), finder.ancestry};
else if (!statIf->hasThen || statIf->thenLocation.containsClosed(position))
return {{{"then", AutocompleteEntry{AutocompleteEntryKind::Keyword}}}, finder.ancestry};
}
else if (AstStatIf* statIf = extractStat<AstStatIf>(finder.ancestry);
statIf && (!statIf->hasThen || statIf->thenLocation.containsClosed(position)))
return {{{"then", AutocompleteEntry{AutocompleteEntryKind::Keyword}}}, finder.ancestry};
else if (AstStatRepeat* statRepeat = node->as<AstStatRepeat>(); statRepeat && statRepeat->condition->is<AstExprError>())
return {autocompleteExpression(sourceModule, *module, typeChecker, typeArena, finder.ancestry, position), finder.ancestry};
else if (AstStatRepeat* statRepeat = extractStat<AstStatRepeat>(finder.ancestry); statRepeat)
return {autocompleteStatement(sourceModule, *module, finder.ancestry, position), finder.ancestry};
else if (AstExprTable* exprTable = parent->as<AstExprTable>(); exprTable && (node->is<AstExprGlobal>() || node->is<AstExprConstantString>()))
{
for (const auto& [kind, key, value] : exprTable->items)
{
// If item doesn't have a key, maybe the value is actually the key
if (key ? key == node : node->is<AstExprGlobal>() && value == node)
{
if (auto it = module->astExpectedTypes.find(exprTable))
{
auto result = autocompleteProps(*module, typeArena, *it, PropIndexType::Key, finder.ancestry);
// Remove keys that are already completed
for (const auto& item : exprTable->items)
{
if (!item.key)
continue;
if (auto stringKey = item.key->as<AstExprConstantString>())
result.erase(std::string(stringKey->value.data, stringKey->value.size));
}
// If we know for sure that a key is being written, do not offer general expression suggestions
if (!key)
autocompleteExpression(sourceModule, *module, typeChecker, typeArena, finder.ancestry, position, result);
return {result, finder.ancestry};
}
break;
}
}
}
else if (isIdentifier(node) && (parent->is<AstStatExpr>() || parent->is<AstStatError>()))
return {autocompleteStatement(sourceModule, *module, finder.ancestry, position), finder.ancestry};
if (std::optional<AutocompleteEntryMap> ret = autocompleteStringParams(sourceModule, module, finder.ancestry, position, callback))
{
return {*ret, finder.ancestry};
}
else if (node->is<AstExprConstantString>())
{
if (finder.ancestry.size() >= 2)
{
if (auto idxExpr = finder.ancestry.at(finder.ancestry.size() - 2)->as<AstExprIndexExpr>())
{
if (auto it = module->astTypes.find(idxExpr->expr))
{
return {autocompleteProps(*module, typeArena, follow(*it), PropIndexType::Point, finder.ancestry), finder.ancestry};
}
}
}
return {};
}
if (node->is<AstExprConstantNumber>())
{
return {};
}
if (node->asExpr())
return {autocompleteExpression(sourceModule, *module, typeChecker, typeArena, finder.ancestry, position), finder.ancestry};
else if (node->asStat())
return {autocompleteStatement(sourceModule, *module, finder.ancestry, position), finder.ancestry};
return {};
}
AutocompleteResult autocomplete(Frontend& frontend, const ModuleName& moduleName, Position position, StringCompletionCallback callback)
{
// FIXME: We can improve performance here by parsing without checking.
// The old type graph is probably fine. (famous last words!)
// FIXME: We don't need to typecheck for script analysis here, just for autocomplete.
frontend.check(moduleName);
const SourceModule* sourceModule = frontend.getSourceModule(moduleName);
if (!sourceModule)
return {};
TypeChecker& typeChecker =
2021-11-12 02:12:39 +00:00
(frontend.options.typecheckTwice ? frontend.typeCheckerForAutocomplete : frontend.typeChecker);
ModulePtr module =
2021-11-12 02:12:39 +00:00
(frontend.options.typecheckTwice ? frontend.moduleResolverForAutocomplete.getModule(moduleName)
: frontend.moduleResolver.getModule(moduleName));
if (!module)
return {};
AutocompleteResult autocompleteResult = autocomplete(*sourceModule, module, typeChecker, &frontend.arenaForAutocomplete, position, callback);
frontend.arenaForAutocomplete.clear();
return autocompleteResult;
}
OwningAutocompleteResult autocompleteSource(Frontend& frontend, std::string_view source, Position position, StringCompletionCallback callback)
{
auto sourceModule = std::make_unique<SourceModule>();
ParseOptions parseOptions;
parseOptions.captureComments = true;
ParseResult result = Parser::parse(source.data(), source.size(), *sourceModule->names, *sourceModule->allocator, parseOptions);
if (!result.root)
return {AutocompleteResult{}, {}, nullptr};
sourceModule->name = "FRAGMENT_SCRIPT";
sourceModule->root = result.root;
sourceModule->mode = Mode::Strict;
sourceModule->commentLocations = std::move(result.commentLocations);
TypeChecker& typeChecker =
2021-11-12 02:12:39 +00:00
(frontend.options.typecheckTwice ? frontend.typeCheckerForAutocomplete : frontend.typeChecker);
ModulePtr module = typeChecker.check(*sourceModule, Mode::Strict);
OwningAutocompleteResult autocompleteResult = {
autocomplete(*sourceModule, module, typeChecker, &frontend.arenaForAutocomplete, position, callback), std::move(module),
std::move(sourceModule)};
frontend.arenaForAutocomplete.clear();
return autocompleteResult;
}
} // namespace Luau