luau/tests/AssemblyBuilderA64.test.cpp

581 lines
17 KiB
C++
Raw Normal View History

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/AssemblyBuilderA64.h"
#include "Luau/StringUtils.h"
#include "doctest.h"
#include <string.h>
using namespace Luau::CodeGen;
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-03 20:21:14 +00:00
using namespace Luau::CodeGen::A64;
static std::string bytecodeAsArray(const std::vector<uint8_t>& bytecode)
{
std::string result = "{";
for (size_t i = 0; i < bytecode.size(); i++)
Luau::formatAppend(result, "%s0x%02x", i == 0 ? "" : ", ", bytecode[i]);
return result.append("}");
}
static std::string bytecodeAsArray(const std::vector<uint32_t>& code)
{
std::string result = "{";
for (size_t i = 0; i < code.size(); i++)
Luau::formatAppend(result, "%s0x%08x", i == 0 ? "" : ", ", code[i]);
return result.append("}");
}
class AssemblyBuilderA64Fixture
{
public:
bool check(void (*f)(AssemblyBuilderA64& build), std::vector<uint32_t> code, std::vector<uint8_t> data = {}, unsigned int features = 0)
{
AssemblyBuilderA64 build(/* logText= */ false, features);
f(build);
build.finalize();
if (build.code != code)
{
printf("Expected code: %s\nReceived code: %s\n", bytecodeAsArray(code).c_str(), bytecodeAsArray(build.code).c_str());
return false;
}
if (build.data != data)
{
printf("Expected data: %s\nReceived data: %s\n", bytecodeAsArray(data).c_str(), bytecodeAsArray(build.data).c_str());
return false;
}
return true;
}
};
// armconverter.com can be used to validate instruction sequences
TEST_SUITE_BEGIN("A64Assembly");
#define SINGLE_COMPARE(inst, ...) \
CHECK(check( \
[](AssemblyBuilderA64& build) { \
build.inst; \
}, \
{__VA_ARGS__}))
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "Unary")
{
SINGLE_COMPARE(neg(x0, x1), 0xCB0103E0);
SINGLE_COMPARE(neg(w0, w1), 0x4B0103E0);
Sync to upstream/release/576 (#928) * `ClassType` can now have an indexer defined on it. This allows custom types to be used in `t[x]` expressions. * Fixed search for closest executable breakpoint line. Previously, breakpoints might have been skipped in `else` blocks at the end of a function * Fixed how unification is performed for two optional types `a? <: b?`, previously it might have unified either 'a' or 'b' with 'nil'. Note that this fix is not enabled by default yet (see the list in `ExperimentalFlags.h`) In the new type solver, a concept of 'Type Families' has been introduced. Type families can be thought of as type aliases with custom type inference/reduction logic included with them. For example, we can have an `Add<T, U>` type family that will resolve the type that is the result of adding two values together. This will help type inference to figure out what 'T' and 'U' might be when explicit type annotations are not provided. In this update we don't define any type families, but they will be added in the near future. It is also possible for Luau embedders to define their own type families in the global/environment scope. Other changes include: * Fixed scope used to find out which generic types should be included in the function generic type list * Fixed a crash after cyclic bound types were created during unification And in native code generation (jit): * Use of arm64 target on M1 now requires macOS 13 * Entry into native code has been optimized. This is especially important for coroutine call/pcall performance as they involve going through a C call frame * LOP_LOADK(X) translation into IR has been improved to enable type tag/constant propagation * arm64 can use integer immediate values to synthesize floating-point values * x64 assembler removes duplicate 64bit numbers from the data section to save space * Linux `perf` can now be used to profile native Luau code (when running with --codegen-perf CLI argument)
2023-05-12 18:50:47 +01:00
SINGLE_COMPARE(mvn_(x0, x1), 0xAA2103E0);
SINGLE_COMPARE(clz(x0, x1), 0xDAC01020);
SINGLE_COMPARE(clz(w0, w1), 0x5AC01020);
SINGLE_COMPARE(rbit(x0, x1), 0xDAC00020);
SINGLE_COMPARE(rbit(w0, w1), 0x5AC00020);
}
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "Binary")
{
// reg, reg
SINGLE_COMPARE(add(x0, x1, x2), 0x8B020020);
SINGLE_COMPARE(add(w0, w1, w2), 0x0B020020);
SINGLE_COMPARE(add(x0, x1, x2, 7), 0x8B021C20);
SINGLE_COMPARE(add(x0, x1, x2, -7), 0x8B421C20);
SINGLE_COMPARE(sub(x0, x1, x2), 0xCB020020);
SINGLE_COMPARE(and_(x0, x1, x2), 0x8A020020);
SINGLE_COMPARE(and_(x0, x1, x2, 7), 0x8A021C20);
SINGLE_COMPARE(and_(x0, x1, x2, -7), 0x8A421C20);
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 19:06:22 +01:00
SINGLE_COMPARE(bic(x0, x1, x2), 0x8A220020);
SINGLE_COMPARE(orr(x0, x1, x2), 0xAA020020);
SINGLE_COMPARE(eor(x0, x1, x2), 0xCA020020);
SINGLE_COMPARE(lsl(x0, x1, x2), 0x9AC22020);
SINGLE_COMPARE(lsl(w0, w1, w2), 0x1AC22020);
SINGLE_COMPARE(lsr(x0, x1, x2), 0x9AC22420);
SINGLE_COMPARE(asr(x0, x1, x2), 0x9AC22820);
SINGLE_COMPARE(ror(x0, x1, x2), 0x9AC22C20);
SINGLE_COMPARE(cmp(x0, x1), 0xEB01001F);
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 19:06:22 +01:00
SINGLE_COMPARE(tst(x0, x1), 0xEA01001F);
// reg, imm
SINGLE_COMPARE(add(x3, x7, 78), 0x910138E3);
SINGLE_COMPARE(add(w3, w7, 78), 0x110138E3);
SINGLE_COMPARE(sub(w3, w7, 78), 0x510138E3);
SINGLE_COMPARE(cmp(w0, 42), 0x7100A81F);
}
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "BinaryExtended")
{
// reg, reg
SINGLE_COMPARE(add(x0, x1, w2, 3), 0x8B224C20);
SINGLE_COMPARE(sub(x0, x1, w2, 3), 0xCB224C20);
}
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 19:06:22 +01:00
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "BinaryImm")
{
// instructions
SINGLE_COMPARE(and_(w1, w2, 1), 0x12000041);
SINGLE_COMPARE(orr(w1, w2, 1), 0x32000041);
SINGLE_COMPARE(eor(w1, w2, 1), 0x52000041);
SINGLE_COMPARE(tst(w1, 1), 0x7200003f);
// various mask forms
SINGLE_COMPARE(and_(w0, w0, 1), 0x12000000);
SINGLE_COMPARE(and_(w0, w0, 3), 0x12000400);
SINGLE_COMPARE(and_(w0, w0, 7), 0x12000800);
SINGLE_COMPARE(and_(w0, w0, 2147483647), 0x12007800);
SINGLE_COMPARE(and_(w0, w0, 6), 0x121F0400);
SINGLE_COMPARE(and_(w0, w0, 12), 0x121E0400);
SINGLE_COMPARE(and_(w0, w0, 2147483648), 0x12010000);
// shifts
SINGLE_COMPARE(lsl(w1, w2, 1), 0x531F7841);
SINGLE_COMPARE(lsl(x1, x2, 1), 0xD37FF841);
SINGLE_COMPARE(lsr(w1, w2, 1), 0x53017C41);
SINGLE_COMPARE(lsr(x1, x2, 1), 0xD341FC41);
SINGLE_COMPARE(asr(w1, w2, 1), 0x13017C41);
SINGLE_COMPARE(asr(x1, x2, 1), 0x9341FC41);
SINGLE_COMPARE(ror(w1, w2, 1), 0x13820441);
SINGLE_COMPARE(ror(x1, x2, 1), 0x93C20441);
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 19:06:22 +01:00
}
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "Bitfield")
{
SINGLE_COMPARE(ubfiz(x1, x2, 37, 5), 0xD35B1041);
SINGLE_COMPARE(ubfx(x1, x2, 37, 5), 0xD365A441);
SINGLE_COMPARE(sbfiz(x1, x2, 37, 5), 0x935B1041);
SINGLE_COMPARE(sbfx(x1, x2, 37, 5), 0x9365A441);
SINGLE_COMPARE(ubfiz(w1, w2, 17, 5), 0x530F1041);
SINGLE_COMPARE(ubfx(w1, w2, 17, 5), 0x53115441);
SINGLE_COMPARE(sbfiz(w1, w2, 17, 5), 0x130F1041);
SINGLE_COMPARE(sbfx(w1, w2, 17, 5), 0x13115441);
}
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "Loads")
{
// address forms
SINGLE_COMPARE(ldr(x0, x1), 0xF9400020);
SINGLE_COMPARE(ldr(x0, mem(x1, 8)), 0xF9400420);
SINGLE_COMPARE(ldr(x0, mem(x1, x7)), 0xF8676820);
SINGLE_COMPARE(ldr(x0, mem(x1, -7)), 0xF85F9020);
// load sizes
SINGLE_COMPARE(ldr(x0, x1), 0xF9400020);
SINGLE_COMPARE(ldr(w0, x1), 0xB9400020);
SINGLE_COMPARE(ldrb(w0, x1), 0x39400020);
SINGLE_COMPARE(ldrh(w0, x1), 0x79400020);
SINGLE_COMPARE(ldrsb(x0, x1), 0x39800020);
SINGLE_COMPARE(ldrsb(w0, x1), 0x39C00020);
SINGLE_COMPARE(ldrsh(x0, x1), 0x79800020);
SINGLE_COMPARE(ldrsh(w0, x1), 0x79C00020);
SINGLE_COMPARE(ldrsw(x0, x1), 0xB9800020);
// load sizes x offset scaling
SINGLE_COMPARE(ldr(x0, mem(x1, 8)), 0xF9400420);
SINGLE_COMPARE(ldr(w0, mem(x1, 8)), 0xB9400820);
SINGLE_COMPARE(ldrb(w0, mem(x1, 8)), 0x39402020);
SINGLE_COMPARE(ldrh(w0, mem(x1, 8)), 0x79401020);
SINGLE_COMPARE(ldrsb(w0, mem(x1, 8)), 0x39C02020);
SINGLE_COMPARE(ldrsh(w0, mem(x1, 8)), 0x79C01020);
// paired loads
SINGLE_COMPARE(ldp(x0, x1, mem(x2, 8)), 0xA9408440);
SINGLE_COMPARE(ldp(w0, w1, mem(x2, -8)), 0x297F0440);
}
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "Stores")
{
// address forms
SINGLE_COMPARE(str(x0, x1), 0xF9000020);
SINGLE_COMPARE(str(x0, mem(x1, 8)), 0xF9000420);
SINGLE_COMPARE(str(x0, mem(x1, x7)), 0xF8276820);
SINGLE_COMPARE(strh(w0, mem(x1, -7)), 0x781F9020);
// store sizes
SINGLE_COMPARE(str(x0, x1), 0xF9000020);
SINGLE_COMPARE(str(w0, x1), 0xB9000020);
SINGLE_COMPARE(strb(w0, x1), 0x39000020);
SINGLE_COMPARE(strh(w0, x1), 0x79000020);
// store sizes x offset scaling
SINGLE_COMPARE(str(x0, mem(x1, 8)), 0xF9000420);
SINGLE_COMPARE(str(w0, mem(x1, 8)), 0xB9000820);
SINGLE_COMPARE(strb(w0, mem(x1, 8)), 0x39002020);
SINGLE_COMPARE(strh(w0, mem(x1, 8)), 0x79001020);
// paired stores
SINGLE_COMPARE(stp(x0, x1, mem(x2, 8)), 0xA9008440);
SINGLE_COMPARE(stp(w0, w1, mem(x2, -8)), 0x293F0440);
}
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "Moves")
{
SINGLE_COMPARE(mov(x0, x1), 0xAA0103E0);
SINGLE_COMPARE(mov(w0, w1), 0x2A0103E0);
SINGLE_COMPARE(movz(x0, 42), 0xD2800540);
SINGLE_COMPARE(movz(w0, 42), 0x52800540);
SINGLE_COMPARE(movn(x0, 42), 0x92800540);
SINGLE_COMPARE(movn(w0, 42), 0x12800540);
SINGLE_COMPARE(movk(x0, 42, 16), 0xF2A00540);
CHECK(check(
[](AssemblyBuilderA64& build) {
build.mov(x0, 42);
},
{0xD2800540}));
CHECK(check(
[](AssemblyBuilderA64& build) {
build.mov(x0, 424242);
},
{0xD28F2640, 0xF2A000C0}));
CHECK(check(
[](AssemblyBuilderA64& build) {
build.mov(x0, -42);
},
{0x92800520}));
CHECK(check(
[](AssemblyBuilderA64& build) {
build.mov(x0, -424242);
},
{0x928F2620, 0xF2BFFF20}));
CHECK(check(
[](AssemblyBuilderA64& build) {
build.mov(x0, -65536);
},
{0x929FFFE0}));
CHECK(check(
[](AssemblyBuilderA64& build) {
build.mov(x0, -65537);
},
{0x92800000, 0xF2BFFFC0}));
}
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "ControlFlow")
{
// Jump back
CHECK(check(
[](AssemblyBuilderA64& build) {
Label start = build.setLabel();
build.mov(x0, x1);
build.b(ConditionA64::Equal, start);
},
{0xAA0103E0, 0x54FFFFE0}));
// Jump forward
CHECK(check(
[](AssemblyBuilderA64& build) {
Label skip;
build.b(ConditionA64::Equal, skip);
build.mov(x0, x1);
build.setLabel(skip);
},
{0x54000040, 0xAA0103E0}));
// Jumps
CHECK(check(
[](AssemblyBuilderA64& build) {
Label skip;
build.b(ConditionA64::Equal, skip);
build.cbz(x0, skip);
build.cbnz(x0, skip);
build.tbz(x0, 5, skip);
build.tbnz(x0, 5, skip);
build.setLabel(skip);
build.b(skip);
build.bl(skip);
},
{0x540000A0, 0xB4000080, 0xB5000060, 0x36280040, 0x37280020, 0x14000000, 0x97ffffff}));
// Basic control flow
SINGLE_COMPARE(br(x0), 0xD61F0000);
SINGLE_COMPARE(blr(x0), 0xD63F0000);
SINGLE_COMPARE(ret(), 0xD65F03C0);
}
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "StackOps")
{
SINGLE_COMPARE(mov(x0, sp), 0x910003E0);
SINGLE_COMPARE(mov(sp, x0), 0x9100001F);
SINGLE_COMPARE(add(sp, sp, 4), 0x910013FF);
SINGLE_COMPARE(sub(sp, sp, 4), 0xD10013FF);
SINGLE_COMPARE(add(x0, sp, 4), 0x910013E0);
SINGLE_COMPARE(sub(sp, x0, 4), 0xD100101F);
SINGLE_COMPARE(ldr(x0, mem(sp, 8)), 0xF94007E0);
SINGLE_COMPARE(str(x0, mem(sp, 8)), 0xF90007E0);
}
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "Constants")
{
// clang-format off
CHECK(check(
[](AssemblyBuilderA64& build) {
char arr[12] = "hello world";
build.adr(x0, arr, 12);
build.adr(x0, uint64_t(0x1234567887654321));
build.adr(x0, 1.0);
},
{
0x10ffffa0, 0x10ffff20, 0x10fffec0
},
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf0, 0x3f,
0x21, 0x43, 0x65, 0x87, 0x78, 0x56, 0x34, 0x12,
0x00, 0x00, 0x00, 0x00, // 4b padding to align double
'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', 0x0,
}));
// clang-format on
}
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "AddressOfLabel")
{
// clang-format off
CHECK(check(
[](AssemblyBuilderA64& build) {
Label label;
build.adr(x0, label);
build.add(x0, x0, x0);
build.setLabel(label);
},
{
0x10000040, 0x8b000000,
}));
// clang-format on
}
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "FPBasic")
{
SINGLE_COMPARE(fmov(d0, d1), 0x1E604020);
Sync to upstream/release/576 (#928) * `ClassType` can now have an indexer defined on it. This allows custom types to be used in `t[x]` expressions. * Fixed search for closest executable breakpoint line. Previously, breakpoints might have been skipped in `else` blocks at the end of a function * Fixed how unification is performed for two optional types `a? <: b?`, previously it might have unified either 'a' or 'b' with 'nil'. Note that this fix is not enabled by default yet (see the list in `ExperimentalFlags.h`) In the new type solver, a concept of 'Type Families' has been introduced. Type families can be thought of as type aliases with custom type inference/reduction logic included with them. For example, we can have an `Add<T, U>` type family that will resolve the type that is the result of adding two values together. This will help type inference to figure out what 'T' and 'U' might be when explicit type annotations are not provided. In this update we don't define any type families, but they will be added in the near future. It is also possible for Luau embedders to define their own type families in the global/environment scope. Other changes include: * Fixed scope used to find out which generic types should be included in the function generic type list * Fixed a crash after cyclic bound types were created during unification And in native code generation (jit): * Use of arm64 target on M1 now requires macOS 13 * Entry into native code has been optimized. This is especially important for coroutine call/pcall performance as they involve going through a C call frame * LOP_LOADK(X) translation into IR has been improved to enable type tag/constant propagation * arm64 can use integer immediate values to synthesize floating-point values * x64 assembler removes duplicate 64bit numbers from the data section to save space * Linux `perf` can now be used to profile native Luau code (when running with --codegen-perf CLI argument)
2023-05-12 18:50:47 +01:00
SINGLE_COMPARE(fmov(d0, x1), 0x9E670020);
}
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "FPMath")
{
SINGLE_COMPARE(fabs(d1, d2), 0x1E60C041);
SINGLE_COMPARE(fadd(d1, d2, d3), 0x1E632841);
SINGLE_COMPARE(fdiv(d1, d2, d3), 0x1E631841);
SINGLE_COMPARE(fmul(d1, d2, d3), 0x1E630841);
SINGLE_COMPARE(fneg(d1, d2), 0x1E614041);
SINGLE_COMPARE(fsqrt(d1, d2), 0x1E61C041);
SINGLE_COMPARE(fsub(d1, d2, d3), 0x1E633841);
SINGLE_COMPARE(frinta(d1, d2), 0x1E664041);
SINGLE_COMPARE(frintm(d1, d2), 0x1E654041);
SINGLE_COMPARE(frintp(d1, d2), 0x1E64C041);
SINGLE_COMPARE(fcvt(s1, d2), 0x1E624041);
SINGLE_COMPARE(fcvt(d1, s2), 0x1E22C041);
SINGLE_COMPARE(fcvtzs(w1, d2), 0x1E780041);
SINGLE_COMPARE(fcvtzs(x1, d2), 0x9E780041);
SINGLE_COMPARE(fcvtzu(w1, d2), 0x1E790041);
SINGLE_COMPARE(fcvtzu(x1, d2), 0x9E790041);
SINGLE_COMPARE(scvtf(d1, w2), 0x1E620041);
SINGLE_COMPARE(scvtf(d1, x2), 0x9E620041);
SINGLE_COMPARE(ucvtf(d1, w2), 0x1E630041);
SINGLE_COMPARE(ucvtf(d1, x2), 0x9E630041);
CHECK(check(
[](AssemblyBuilderA64& build) {
build.fjcvtzs(w1, d2);
},
{0x1E7E0041}, {}, A64::Feature_JSCVT));
}
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "FPLoadStore")
{
// address forms
SINGLE_COMPARE(ldr(d0, x1), 0xFD400020);
SINGLE_COMPARE(ldr(d0, mem(x1, 8)), 0xFD400420);
SINGLE_COMPARE(ldr(d0, mem(x1, x7)), 0xFC676820);
SINGLE_COMPARE(ldr(d0, mem(x1, -7)), 0xFC5F9020);
SINGLE_COMPARE(str(d0, x1), 0xFD000020);
SINGLE_COMPARE(str(d0, mem(x1, 8)), 0xFD000420);
SINGLE_COMPARE(str(d0, mem(x1, x7)), 0xFC276820);
SINGLE_COMPARE(str(d0, mem(x1, -7)), 0xFC1F9020);
// load/store sizes
SINGLE_COMPARE(ldr(s0, x1), 0xBD400020);
SINGLE_COMPARE(ldr(d0, x1), 0xFD400020);
SINGLE_COMPARE(ldr(q0, x1), 0x3DC00020);
SINGLE_COMPARE(str(s0, x1), 0xBD000020);
SINGLE_COMPARE(str(d0, x1), 0xFD000020);
SINGLE_COMPARE(str(q0, x1), 0x3D800020);
// load/store sizes x offset scaling
SINGLE_COMPARE(ldr(q0, mem(x1, 16)), 0x3DC00420);
SINGLE_COMPARE(ldr(d0, mem(x1, 16)), 0xFD400820);
SINGLE_COMPARE(ldr(s0, mem(x1, 16)), 0xBD401020);
SINGLE_COMPARE(str(q0, mem(x1, 16)), 0x3D800420);
SINGLE_COMPARE(str(d0, mem(x1, 16)), 0xFD000820);
SINGLE_COMPARE(str(s0, mem(x1, 16)), 0xBD001020);
}
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "FPCompare")
{
SINGLE_COMPARE(fcmp(d0, d1), 0x1E612000);
SINGLE_COMPARE(fcmpz(d1), 0x1E602028);
}
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "FPImm")
{
SINGLE_COMPARE(fmov(d0, 0), 0x2F00E400);
SINGLE_COMPARE(fmov(d0, 0.125), 0x1E681000);
SINGLE_COMPARE(fmov(d0, -0.125), 0x1E781000);
CHECK(!AssemblyBuilderA64::isFmovSupported(-0.0));
CHECK(!AssemblyBuilderA64::isFmovSupported(0.12389));
}
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "AddressOffsetSize")
{
SINGLE_COMPARE(ldr(w0, mem(x1, 16)), 0xB9401020);
SINGLE_COMPARE(ldr(x0, mem(x1, 16)), 0xF9400820);
SINGLE_COMPARE(ldr(d0, mem(x1, 16)), 0xFD400820);
SINGLE_COMPARE(ldr(q0, mem(x1, 16)), 0x3DC00420);
SINGLE_COMPARE(str(w0, mem(x1, 16)), 0xB9001020);
SINGLE_COMPARE(str(x0, mem(x1, 16)), 0xF9000820);
SINGLE_COMPARE(str(d0, mem(x1, 16)), 0xFD000820);
SINGLE_COMPARE(str(q0, mem(x1, 16)), 0x3D800420);
}
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 19:06:22 +01:00
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "Conditionals")
{
SINGLE_COMPARE(csel(x0, x1, x2, ConditionA64::Equal), 0x9A820020);
SINGLE_COMPARE(csel(w0, w1, w2, ConditionA64::Equal), 0x1A820020);
SINGLE_COMPARE(fcsel(d0, d1, d2, ConditionA64::Equal), 0x1E620C20);
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 19:06:22 +01:00
SINGLE_COMPARE(cset(x1, ConditionA64::Less), 0x9A9FA7E1);
}
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "Undefined")
{
SINGLE_COMPARE(udf(), 0x00000000);
}
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "PrePostIndexing")
{
SINGLE_COMPARE(ldr(x0, mem(x1, 1)), 0xF8401020);
SINGLE_COMPARE(ldr(x0, mem(x1, 1, AddressKindA64::pre)), 0xF8401C20);
SINGLE_COMPARE(ldr(x0, mem(x1, 1, AddressKindA64::post)), 0xF8401420);
SINGLE_COMPARE(ldr(q0, mem(x1, 1)), 0x3CC01020);
SINGLE_COMPARE(ldr(q0, mem(x1, 1, AddressKindA64::pre)), 0x3CC01C20);
SINGLE_COMPARE(ldr(q0, mem(x1, 1, AddressKindA64::post)), 0x3CC01420);
SINGLE_COMPARE(str(x0, mem(x1, 1)), 0xF8001020);
SINGLE_COMPARE(str(x0, mem(x1, 1, AddressKindA64::pre)), 0xF8001C20);
SINGLE_COMPARE(str(x0, mem(x1, 1, AddressKindA64::post)), 0xF8001420);
SINGLE_COMPARE(str(q0, mem(x1, 1)), 0x3C801020);
SINGLE_COMPARE(str(q0, mem(x1, 1, AddressKindA64::pre)), 0x3C801C20);
SINGLE_COMPARE(str(q0, mem(x1, 1, AddressKindA64::post)), 0x3C801420);
}
TEST_CASE("LogTest")
{
AssemblyBuilderA64 build(/* logText= */ true);
build.add(sp, sp, 4);
build.add(w0, w1, w2);
build.add(x0, x1, x2, 2);
build.add(x0, x1, x2, -2);
build.add(w7, w8, 5);
build.add(x7, x8, 5);
build.ldr(x7, x8);
build.ldr(x7, mem(x8, 8));
build.ldr(x7, mem(x8, x9));
build.mov(x1, x2);
build.movk(x1, 42, 16);
build.cmp(x1, x2);
build.blr(x0);
Label l;
build.b(ConditionA64::Plus, l);
build.cbz(x7, l);
build.ldp(x0, x1, mem(x8, 8));
build.adr(x0, l);
build.fabs(d1, d2);
build.ldr(q1, x2);
build.csel(x0, x1, x2, ConditionA64::Equal);
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 19:06:22 +01:00
build.cset(x0, ConditionA64::Equal);
build.fcmp(d0, d1);
build.fcmpz(d0);
build.fmov(d0, 0.25);
build.tbz(x0, 5, l);
build.fcvt(s1, d2);
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
build.ubfx(x1, x2, 37, 5);
build.ldr(x0, mem(x1, 1));
build.ldr(x0, mem(x1, 1, AddressKindA64::pre));
build.ldr(x0, mem(x1, 1, AddressKindA64::post));
build.add(x1, x2, w3, 3);
build.setLabel(l);
build.ret();
build.finalize();
std::string expected = R"(
add sp,sp,#4
add w0,w1,w2
add x0,x1,x2 LSL #2
add x0,x1,x2 LSR #2
add w7,w8,#5
add x7,x8,#5
ldr x7,[x8]
ldr x7,[x8,#8]
ldr x7,[x8,x9]
mov x1,x2
movk x1,#42 LSL #16
cmp x1,x2
blr x0
b.pl .L1
cbz x7,.L1
ldp x0,x1,[x8,#8]
adr x0,.L1
fabs d1,d2
ldr q1,[x2]
csel x0,x1,x2,eq
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 19:06:22 +01:00
cset x0,eq
fcmp d0,d1
fcmp d0,#0
fmov d0,#0.25
tbz x0,#5,.L1
fcvt s1,d2
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
ubfx x1,x2,#3705
ldr x0,[x1,#1]
ldr x0,[x1,#1]!
ldr x0,[x1]!,#1
add x1,x2,w3 UXTW #3
.L1:
ret
)";
CHECK("\n" + build.text == expected);
}
TEST_SUITE_END();