luau/prototyping/Luau/OpSem.agda

144 lines
5.5 KiB
Agda
Raw Normal View History

{-# OPTIONS --rewriting #-}
module Luau.OpSem where
open import Agda.Builtin.Equality using (_≡_)
open import Agda.Builtin.Float using (Float; primFloatPlus; primFloatMinus; primFloatTimes; primFloatDiv; primFloatEquality; primFloatLess; primFloatInequality)
open import Agda.Builtin.Bool using (Bool; true; false)
2022-03-02 23:26:58 +00:00
open import Agda.Builtin.String using (primStringEquality; primStringAppend)
open import Utility.Bool using (not; _or_; _and_)
open import Agda.Builtin.Nat using () renaming (_==_ to _==ᴬ_)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import Luau.Heap using (Heap; _≡_⊕_↦_; _[_]; function_is_end)
open import Luau.Substitution using (_[_/_]ᴮ)
2022-03-02 23:26:58 +00:00
open import Luau.Syntax using (Value; Expr; Stat; Block; nil; addr; val; var; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; name; fun; arg; binexp; BinaryOperator; +; -; *; /; <; >; ==; ~=; <=; >=; ··; number; bool; string)
open import Luau.RuntimeType using (RuntimeType; valueType)
open import Properties.Product using (_×_; _,_)
evalEqOp : Value Value Bool
evalEqOp Value.nil Value.nil = true
evalEqOp (addr x) (addr y) = (x == y)
evalEqOp (number x) (number y) = primFloatEquality x y
evalEqOp (bool true) (bool y) = y
evalEqOp (bool false) (bool y) = not y
evalEqOp _ _ = false
evalNeqOp : Value Value Bool
evalNeqOp (number x) (number y) = primFloatInequality x y
evalNeqOp x y = not (evalEqOp x y)
data _⟦_⟧_⟶_ : Value BinaryOperator Value Value Set where
+ : m n (number m) + (number n) number (primFloatPlus m n)
- : m n (number m) - (number n) number (primFloatMinus m n)
/ : m n (number m) / (number n) number (primFloatTimes m n)
* : m n (number m) * (number n) number (primFloatDiv m n)
< : m n (number m) < (number n) bool (primFloatLess m n)
> : m n (number m) > (number n) bool (primFloatLess n m)
<= : m n (number m) <= (number n) bool ((primFloatLess m n) or (primFloatEquality m n))
>= : m n (number m) >= (number n) bool ((primFloatLess n m) or (primFloatEquality m n))
== : v w v == w bool (evalEqOp v w)
~= : v w v ~= w bool (evalNeqOp v w)
2022-03-02 23:26:58 +00:00
·· : x y (string x) ·· (string y) string (primStringAppend x y)
data _⊢_⟶ᴮ_⊣_ {a} : Heap a Block a Block a Heap a Set
data _⊢_⟶ᴱ_⊣_ {a} : Heap a Expr a Expr a Heap a Set
data _⊢_⟶ᴱ_⊣_ where
function : a {H H F B}
H H a (function F is B end)
-------------------------------------------
H (function F is B end) ⟶ᴱ val(addr a) H
app₁ : {H H M M N}
H M ⟶ᴱ M H
-----------------------------
H (M $ N) ⟶ᴱ (M $ N) H
app₂ : v {H H N N}
H N ⟶ᴱ N H
-----------------------------
H (val v $ N) ⟶ᴱ (val v $ N) H
beta : O v {H a F B}
(O function F is B end)
H [ a ] just(O)
-----------------------------------------------------------------------------
H (val (addr a) $ val v) ⟶ᴱ (block (fun F) is (B [ v / name(arg F) ]ᴮ) end) H
block : {H H B B b}
H B ⟶ᴮ B H
----------------------------------------------------
H (block b is B end) ⟶ᴱ (block b is B end) H
return : v {H B b}
--------------------------------------------------------
H (block b is return (val v) B end) ⟶ᴱ val v H
done : {H b}
--------------------------------------------
H (block b is done end) ⟶ᴱ (val nil) H
binOp₀ : {H op v₁ v₂ w}
v₁ op v₂ w
--------------------------------------------------
H (binexp (val v₁) op (val v₂)) ⟶ᴱ (val w) H
binOp₁ : {H H x x op y}
H x ⟶ᴱ x H
---------------------------------------------
H (binexp x op y) ⟶ᴱ (binexp x op y) H
binOp₂ : {H H x op y y}
H y ⟶ᴱ y H
---------------------------------------------
H (binexp x op y) ⟶ᴱ (binexp x op y) H
data _⊢_⟶ᴮ_⊣_ where
local : {H H x M M B}
H M ⟶ᴱ M H
-------------------------------------------------
H (local x M B) ⟶ᴮ (local x M B) H
subst : v {H x B}
------------------------------------------------------
H (local x val v B) ⟶ᴮ (B [ v / name x ]ᴮ) H
function : a {H H F B C}
H H a (function F is C end)
--------------------------------------------------------------
H (function F is C end B) ⟶ᴮ (B [ addr a / name(fun F) ]ᴮ) H
return : {H H M M B}
H M ⟶ᴱ M H
--------------------------------------------
H (return M B) ⟶ᴮ (return M B) H
data _⊢_⟶*_⊣_ {a} : Heap a Block a Block a Heap a Set where
refl : {H B}
----------------
H B ⟶* B H
step : {H H H″ B B B″}
H B ⟶ᴮ B H
H B ⟶* B″ H″
------------------
H B ⟶* B″ H″